
Antescofo
a not-so-short introduction to version 0.x

Jean-Louis Giavitto Arshia Cont José Echeveste Julia Bondeau
and MuTAnt team members

August 2016

2

Contents

Interactive Music Systems . 10
The Antescofo approach: coupling score following with a programming language 11

Brief history of Antescofo . 11
Structure of an Antescofo Score . 12

An interweaving of musical events and electronic actions 13
The file structure of an Antescofo augmented score 15

Elements of an Antescofo Score . 15
Simple identifiers: Antescofo keywords and reference to the host environment . 16

@-identifiers: Functions, Macros, and Attributes . 17
$-identifiers : Variables and Parameters . 18
::-identifiers : Processes . 19

1 Events 21
Event Specification . 21
Events as Containers . 23

TRILL . 23
MULTI . 24
Compound Events . 24

Event Attributes . 25
Event Label . 26
The @modulate Attribute . 26

2 Actions in Brief 27
Delays . 27
Label . 29
Action Execution . 29

3 A Brief overview of Antescofo features 31
A useful action : the curve . 31
Make your life easier with macros ! . 31
Tour the loop . 33

3

4 CONTENTS

Build your own world . 34
Why do you need data structures. 34
In processes we trust . 35
A conditional world . 36

Become the time master . 37

4 Management of Time 39
Logical Instant . 39
Time Coordinate . 42
Locating an Action in Time . 42

5 Antescofo Workflow 45
Editing the Score . 45

Importing Scores to Antescofo (import of Midi files and of MusicXML files) . . 45
Importing MIDI scores to Antescofo . 46
Importing MusicXML scores to Antescofo . 46

Using AscoGraph . 46
The App Menu . 47
Color Scheme . 47
Interaction Between Visual and Text Editors in AscoGraph 48
Shortcuts . 48
Edit your curves . 48

Automatic Filewatch: Using Another Text Editor . 49
Styling your score . 50
Interacting with MAX/PureData . 50

Inlets . 50
Outlets . 51
Predefined Messages . 51
The setvar command . 51
Sending and Receiving OSC messages . 51

Preparing the Performance, Rehearsals . 52
Controlling Antescofo from AscoGraph . 52
Moving in the Augmented Score . 52
Tuning the Listening Machine . 53
Dealing with Errors . 54

6 Beyond score following. . . 57
Antescofo as a sequencer . 57
Hierarchical scores . 57

CONTENTS 5

Open scores and installations . 57
Beyond Max and Pure Data. 58

A SuperCollider example . 58
A CSound example . 58
OSC . 60

Be adventurous ! . 60

7 Introduction 63
Other source of documentation . 65

8 Lexical Elements of an Antescofo Score 67
Case-Sensitive and case-Unsensitive Identifiers 67

Comments . 68
Indentation . 68
Reserved Keywords . 69
Simple Identifiers : Antescofo keywords and references to the host environment . . . 72
$-identifiers : Variables . 72
::-identifiers : Processes . 73
@-identifiers : Functions, Macros, and Attributes 73

9 Structure of an Antescofo Program 77
Definitions . 77
The First Sequence of Actions . 78
Reactions: Events Triggering a Sequence of Actions 78
The Sequence of Reactions . 79
An Example . 79

10 Event Specification 83
Musical Event Specification . 84
Pitch Specification . 84
Duration specification . 85
Events as Containers . 85

TRILL . 85
MULTI . 87

Event Attributes . 87
Event Label . 87
Fermata, Pizzicato, Hook and Jump . 88

Open Score and Dynamic jumps . 88
Open Score: specifying alternative follow-ups 88

6 CONTENTS

Dynamic Jumps . 89
Score statement . 90

11 Actions Specifications 93
Action Sequence . 94
A Glimpse of Syntax . 95

Actions Sequence . 95
Atomic Action . 95
Compound Action . 95

Action Attributes . 95
Labels . 96

Delays . 96
Zero Delay . 97
Absolute and Relative Delay . 97
Evaluation of a Delay . 97
Synchronization Strategies . 98

When an Action is Performed . 98

12 Atomic Actions 99
Message passing to Max/PD . 99

Message Receiver . 100
Message arguments . 100
Message terminator . 100
Expressions in messages’ arguments . 101
Computing the receiver . 102

OSC Messages . 102
OSCSEND . 103
OSCRECEIVE . 104
OSCON and OSCOFF . 104
Conversion between OSC types and Antescofo types 104

Writing in a File . 105
Assignments . 106

Assignment to Vector Elements and to Scoped Variables 106
Activities Triggered by Assignments . 107
External Assignments . 107
Unassignable variables . 108

Aborting and Cancelling an Action . 108
Aborting an Action . 109

CONTENTS 7

Abort and the hierarchical structure of compound actions 109
Abort handler . 110

Internal Commands . 111
Controlling the Execution Flow . 112
List of internal commands . 112

Assertion . 120

13 Compound Actions 121
General Syntax of a Compound Action . 122
Loop . 122
ForAll . 122
If . 123
Whenever . 123
Continuation operators . 123

Group . 124
Action Sequence . 125
The Nested Structure of Groups . 126
Instances of a Group . 127
Local variables . 129
Aborting a Group . 129
The until and the while Clause . 129
The during Clause . 130
The @abort clause . 131
The @exclusive Clause . 132
Synchronization Attributes . 132
Local Tempo . 133

Loop: Sequential Iterations . 133
Loop Period . 134
Stopping a Loop . 136
Instantaneous Iteration . 137
Avoiding Overlapping Iterations: [@exclusive] 137
Synchronization Attributes of a Loop . 139

Parallel Iterations . 139
Curve (continuous action) . 140

Simplified Curve Syntax . 140
Full Curve Syntax . 142
Actions Fired by a Curve . 146
Grain, Duration and Breakpoints Specifications 147

8 CONTENTS

Curve Playing a NIM . 148
Interpolation Methods . 149

IF and SWITCH: Conditional and Alternative . 155
IF: Conditional Actions . 155
SWITCH: Alternative Actions . 156

Reacting to logical events . 158
Difference between conditional actions and whenever 159
The @immediate attribute . 159
Synchronization Attributes . 160
Avoiding Overlapping Instances of a Body . 160
Stopping a Whenever . 160
Watching Restrictions . 161
One Activation per Instant . 163
Causal Score and Temporal Shortcuts . 163

Process Creation . 164
Object Creation . 165
Continuations . 165
NotionS of TIME in Antescofo . 169
The Manufacturing of Time . 171

Instants and Succession: Sequential Languages 172
Instants, Succession and Simultaneity: Synchronous Languages 172
Duration : Audio Processing Languages . 174
Supporting Event and Duration . 178

The Fabric of Time . 179
Music as a Collective Performance . 179
The Potential Score Time . 182
The Actual Musician Time . 183
Articulating Time . 183
Synchronizing with an Arbitrary Time . 187
A Side Note on Logical Time versus Actual Time 187

Action Priority . 188
The Thickness of an instant . 188
Same Execution Date . 189
The Syntactic Ordering of Actions . 190
A Full Temporal Address with 3 Components 191
Relevance . 192
Scheduling of Whenevers . 193

Synchronization Strategies . 195

CONTENTS 9

Temporal Scope . 196
Loose Synchronization . 197
Tight Synchronization . 199
Target Synchronization . 199
Comparison between [@loose], [@tight] and dynamic [@target] 201
How to Compute the Position in the Event of Conflicting Information 201
Specifying Alternative Coordination Reference 203
Latency Compensation . 204

Missed Event Errors Strategies . 205

14 Expressions 211
Expressions versus Actions . 211

Three Kinds of Expressions . 213
Auto-Delimited Expressions . 213
Simple Expressions . 214
Extended Expressions . 215

Values . 215
Dynamic Typing . 216
Checking the Type of a Value . 217
Value Comparison . 217

Variables . 218
Histories: Accessing the Past Values of a Variable 218
Variable Declaration . 219
History reflected in a Map or in a Tab . 221
Accessing a Local Variable “From Outside its Scope of Definition” 222
Antescofo System Variables . 224
Special Variables . 224
Variables and Notifications . 225

Temporal Variables . 225
The @sync synchronization attribute . 226
Comparing score following and temporal variables 226

Operators and Predefined Functions . 227
Conditional Expression . 227
@empty and @size . 228

Alphabetical Listing of Antescofo Predefined Functions 228
Actions as Expressions . 228

Simplified Syntax . 228
Example . 229

10 CONTENTS

Scalar Values . 229
The Undefined Value . 229
Boolean Values . 230
Integer Values . 230
Float Values . 230
User-defined Functions . 230
Proc Values . 231
Exec Value . 231

Data Structures . 233
String Value . 234
Map Value . 234
Tables . 239
New Interpolated Map . 248

15 Functions 259
Function definition . 261

Extended expressions . 261
First Examples . 262
Function’s Local Variables and Assignations . 264
The return Statement . 265
Extended Conditional Expressions and Iteration Expressions 266
Atomic Actions in Expressions . 268

Function Call Evaluation Strategy . 269
Functions as Values . 269
Curried Functions . 269
Tracing Function Calls . 271
Infix notation for function calls . 271
Process . 272
Calling a Process . 274

Calling a Process as an Action . 274
Calling a Process as an Expression . 275

Recursive Process . 275
Process as Values . 275
Aborting a Process . 276
Processes and (local) Variables . 277

Process parameters are local variables . 277
Local variables . 277
Dynamically Scoped Variable . 278

/Reference/9-functions/index.html#the-return-statement

CONTENTS 11

Assignment using the dot notation . 278
Process, Tempo and Synchronization . 279
Actors . 279

16 Macros 281
Macro Definition and Usage . 281
Expansion Sequence . 283
Generating New Names . 284
What to choose between macro, functions and processes 286

17 Actors (objects) 289
Introduction: Process as Object . 290
Actors . 291
A Basic Example . 292
Field Definition: @local . 294
Performing an Action at the Object Construction: @init 294
Specifying an Object Method: @method_def and @proc_def 294
Referring to the object: $THISOBJ . 297
Specifying a Broadcast: @broadcast . 297
Specifying a Reaction: @whenever and @react . 298
Specifying an Abort Handler: @abort . 299
Checking the Type of an Object: @is_obj and @is_obj_xxx 299
Object Instantiation . 299
Concurrency Between Method Applications . 299
Object Expansion into Processes and Functions . 300

18 Patterns 301
Note: Patterns on Score . 301

Pattern Variables . 302
Event on Arbitrary Variables . 305

The at Clause. 306
The where Clause . 306
The before Clause . 307
Watching Multiple Variables Simultaneously . 308
A Complex Example . 308

State Patterns . 309
A Motivating Example . 309
The initiation of a state Pattern . 310
The during Clause . 310

12 CONTENTS

Limiting the Number of Matches of a Pattern 311
Pattern Compilation . 311

19 Additional Elements 313
Tracks . 313
File Structure of an Antescofo Score . 315

Writing an augmented score through multiple files 315
Load and Preload Command . 315

Evaluation at Score Loading Time . 316
Constant Expressions . 316
@eval_when_load Clause . 316

Auto-Delimited Expressions . 317
Simple Expressions . 318

Constant Values . 318
Data Structure Definition . 318
Tab Access . 319
Variables and Variables Management . 319
Infix Unary Expressions . 319
Infix Binary Expressions . 319
Conditional . 319
Infix Predicates . 319
Function Application and Process Call . 319
Action As Expression . 320

Macro vs. Function vs. Process . 320
Argument evaluation strategies . 321

Antescofo Evaluation Strategy . 322
Grammar of object definitions . 325
Antescofo Workflow . 325

20 Acknowledgements and credits 327

21 Index 329
A . 329
B . 332
C . 332
D . 333
E . 333
F . 334
G . 334

CONTENTS 13

H . 334
I . 334
J . 335
K . 336
L . 336
M . 336
N . 337
O . 337
P . 338
Q . 339
R . 339
S . 339
T . 341
U . 341
V . 341
W . 342
X . 342
Y . 342
Z . 342
Miscellaneous . 342

Listable Functions and Listable Predicates . 344
Overloaded functions . 344
Side-Effect . 344
Special forms . 344
Function call in infix form . 345

Listing by categories . 345
{!Library/Functions/math_functions.list!} . 345
{!Library/Functions/random_functions.list!} 345
{!Library/Functions/tab_functions.list!} . 345
{!Library/Functions/listable_functions.list!} . 346
{!Library/Functions/nim_functions.list!} . 346
{!Library/Functions/map_functions.list!} . 346
{!Library/Functions/string_functions.list!} . 346
{!Library/Functions/predicates_functions.list!} 346
{!Library/Functions/score_functions.list!} . 346
{!Library/Functions/system_functions.list!} . 346

Alphabetical Listing of Antescofo Predefined Functions 346

14 CONTENTS

22 The rest of the story is yet to be written. . . by you 397

List of Tables

15

16 LIST OF TABLES

List of Figures

1 Antescofo principe . 9
2 synchro score performance . 12
3 Antescofo Score Excerpt showing basic events and actions 13
4 The beginning of Tesla (2014) by Julia Blondeau for Viola and Live electronics

in AscoGraph . 14
5 Rewrite of Figure [fig:a2-ex2] using a Macro and expressions 18

1.1 chord notation . 23
1.2 trill notation . 24
1.3 gliss notation . 24
1.4 notation of a tremolo glissendo . 25

3.1 An example of curve . 32
3.2 Process . 36

4.1 antescofo_architecture . 40
4.2 logical and physical time . 41

5.1 Antescofo Importer . 47
5.2 AscoGraph Interface . 48
5.3 curve edition with Ascograph . 49

6.1 Open score in “Tesla ou l’effet d’étrangeté”, Julia Blondeau 58
6.2 Utilisation of Antescofo with SuperCollider, works by José-Miguel Fernandez . 59
6.3 Utilisation of Antescofo with CSound, works by Julia Blondeau 59
6.4 DonQ . 60
6.5 Frontispice metronom . 62

10.1 First measures of Nachtleben, Julia Blondeau, 2014. 83
10.2 chord notation . 85
10.3 trill notation . 86
10.4 trill notation . 86

17

18 LIST OF FIGURES

10.5 gliss notation . 87

11.1 altered picture of a Tinguely machine . 93

12.1 Example of setvar . 108

13.1 loop . 122
13.2 forall . 122
13.3 if . 123
13.4 whenever . 123
13.5 nested structure of a group . 127
13.6 exemple temporal organization of nested groups 128
13.7 loop . 135
13.8 Simplified Curve syntax and its realisation in Ascograph 141
13.9 Chaining Simplified Curve . 141
13.10image . 144
13.11image . 145
13.12image . 145
13.13image . 146
13.14whenever schedule . 159
13.15illustration of the continuation combinators . 166
13.16image of clocks and metronoms . 170
13.17superdense time in Antescofo . 175
13.18interpretation and synchronization . 181
13.19timing extraction . 182
13.20actual timing . 184
13.21a spectrum of synchronization strategies . 185
13.22loose synchronization time-time map . 185
13.23tight synchronization time-time map . 186
13.24thickness of an instant . 188
13.25nested loop . 192
13.26loose ideal synchronization . 197
13.27loose synchronization when accelerando . 198
13.28loose synchronization when rallentendo . 198
13.29synchronization comparison . 202
13.30tempo specification . 204
13.31fragment of a clock mechanism . 205
13.32error management . 207

LIST OF FIGURES 19

14.1 details from the Paul Klee notebook . 212
14.2 three kinds of expressions . 214
14.3 principe . 216
14.4 continuous ni . 249
14.5 discontinuous nim . 250
14.6 aggreagte nim . 252
14.7 sampling a nim . 254
14.8 align breakpoints . 255
14.9 linearize nim . 255

15.1 image from a clock mechanism . 259
15.2 metronom . 273

16.1 clock mechanism . 281
16.2 Example of a Macro and its realisation upon score load 283

17.1 melophone . 289

18.1 header figure . 301
18.2 state pattern with during, before and @refactory clauses 310
18.3 magnetic harpsychord . 312

19.1 data layout . 323
19.2 call by value 1 . 323
19.3 call by value 2 . 324
19.4 call by value 3 . 325

20.1 Final image: experimental music . 328

21.1 header figure . 343
21.2 the effect of @sample, @align_breakpoints and @linearize on a nim 351
21.3 the effect of @sample, @align_breakpoints and @linearize on a nim 367
21.4 the effect of @sample, @align_breakpoints and @linearize on a nim 386
21.5 the Lang polyline simplification algorithm on a nim 390
21.6 the radial distance simplification algorithm on a nim 391
21.7 the radial distance simplification algorithm on a nim 392

22.1 The hierophant was petrifying . 398

20 LIST OF FIGURES

Antescofo is a coupling of a real-time listening machine with a reactive and timed
synchronous language. The language is used for authoring of music pieces involving live
musicians and computer processes, and the real-time system assures its correct performance
and synchronization despite listening or performance errors.

These pages documents the language starting from version 0.5. Users willing to practice the
language are strongly invited to download Antescofo and use the additional Max or PureData
tutorials (with example programs) that come with them for a sensible illustration of the
language.

Antescofo scores can be edited, visualized and monitored by AscoGraph, a standalone
program communicating with the Antescofo engine via OSC messages. See the related
Ascograph documentation.

The documentation

• starts with a User Guide including the description of the Antescofo Workflow

• proceeds with a Reference Manual

• and is completed by the description of Library Functions and an Antescofo Cook-
book.

These documents are available as online web pages and they are bundled with the Antescofo
package in HTML and in a pdf format. Besides these documents, additional information on
Antescofo can be found:

• on the Project home page

http://forumnet.ircam.fr/user-groups/ascograph/index.html
/UserGuide/intro/index.html
/UserGuide/workflow_editing/index.html
/Reference/1-intro/index.html
/Library/Functions/00intro/index.html
/Library/snipets/index.html
/Library/snipets/index.html
http://repmus.ircam.fr/antescofo

LIST OF FIGURES 21

• on ForumUser where you can find tutorials to download with bundles for MAX and
PureData

• on the web site of the MuTAnt team-project where you can find the scientific and
technical publications on Antescofo

• on Project Development Forge where you can post a bug report

Your feedback is important. Please, send your comments, typos, bugs reports, use cases,
hints, tips and suggestions on the Antescofo ForumUser web pages. It will help us to improve
the documentation and the Antescofo system.

Antescofo: A First User Guide

The Antescofo system couples machine listening and a specific programming language
for compositional and performative purposes. It allows real-time synchronization of human
musicians with computers during live performance.

Figure 1: Antescofo principe

This User Guide gives a bird’s eye view of the Antescofo system:

http://forumnet.ircam.fr/user-groups/antescofo/index.html
http://repmus.ircam.fr/mutant
http://forge.ircam.fr/p/antescofo/
http://forumnet.ircam.fr/discussion-group/antescofo/?lang=en%3E
/UserGuide/intro/index.html

22 LIST OF FIGURES

Introduction
a brief

introduction on
Interactive Music
Systems and score

following
(cf. below)

a presenta-
tion of the
Structure of

an
Augmented
Score in
Antescofo
which

specifies the
musical

events that
will be

recognized
in the audio

stream
together
with the
actions to
trigger in
time

a short
introduction
on Events and
Actions, the
basic elements

of an
augmented

score

Overview
an overview
ofAntescofo
Features

a
digression
on
Antescofo
Model of
Time
which is at
the heart
of the
unique
features
offered in
Antescofo
to synchro-
nize a
musical
stream
with
electronic
actions

structure/index.html
structure/index.html
structure/index.html
structure/index.html
events/index.html
action/index.html
overview/index.html
overview/index.html
time/index.html
time/index.html
time/index.html

LIST OF FIGURES 23

Workflow
Authoring
the Score

How to
Interact

with the En-
vironment

and
Preparing

the
Performance
by tuning

the listening
machine,

testing and
debuging the

system
during

rehearsals up
to the final
performance

Beyond score following || :———————|:——- Antescofo is not limited to score following
and been used as an expressive programmable sequencer dealing with multiple timelines, in inter-
active installations, for open and dynamic scores, etc.|Experience Yourself

Additional information is available elsewhere: The Reference Manual offers a more detailed
presentation of Antescofo features. The Library Functions list all predefined functions in the
Antescofo library. The Antescofo distribution comes with several tutorial patches for Max or
PD as well as the augmented score of actual pieces. The ForumUser is also a valuable source
of information.

Interactive Music Systems

Mixed music (aka. interactive music) is the live association of acoustic instruments played by
human musicians and electronic processes run on computers. Mixed music pieces feature real-
time processes, as diverse as signal processing (sound effects, spatialization), signal synthesis,
or message passing to multimedia software.

The specification of such processes and the definition of temporal constraints between
musicians and electronics are critical issues in mixed music. They can be achieved through a
program that connects music sheets and electronic processes. We call such a program an an
augmented score.

Indeed, a music score is a key tool for composers at authoring time and for musicians at
performance time. Composers traditionally organize the musical events played by musicians
on a virtual time line (expressed in beats). These objects share temporal relationships, such
as structures of sequences (e.g., bars) or polyphony. To encompass all aspects of a mixed
music piece, electronic actions have to share the same virtual time frame of the musical events,
denoted in beats, and the same organization in hierarchical and sequential structures.

During live performance, musicians interpret the score with precise and personal timing,
where the score time (in beats) is evaluated into the physical time (measurable in seconds). For
the same score, different interpretations lead to different temporal deviations, and musician’s

workflow_editing/index.html
workflow_editing/index.html
workflow_environment/index.html
workflow_environment/index.html
workflow_environment/index.html
workflow_environment/index.html
workflow_rehearsal/index.html
workflow_rehearsal/index.html
workflow_rehearsal/index.html
electronic/index.html
electronic/index.html#be-adventurous
/Reference/1-intro/index.html
/Library/Functions/00intro/index.html
http://forumnet.ircam.fr/product/antescofo-en/index.html
https://cycling74.com/index.html
https://puredata.info/index.html
http://forumnet.ircam.fr/user-groups/antescofo/index.html

24 LIST OF FIGURES

actual tempo can vary drastically from the nominal tempo marks. This phenomenon depends
on the individual performers and the interpretative context. To be executed in a musical way,
electronic processes should follow the temporal deviations of the human performers.

The Antescofo approach: coupling score following with a programming lan-
guage

Achieving this goal starts by score following, a task defined as real-time automatic alignment
of the performance (usually through its audio stream) on the music score. However, score
following is only the first step toward musician-computer interaction; it enables such interactions
but does not give any insight on the nature of the accompaniment and the way it is synchronized.

Antescofo is built on the strong coupling of machine listening and a specific programming
language for compositional and performative purposes:

• The Listening module of Antescofo software infers the variability of the performance,
through score following and tempo detection algorithms.

• And the Antescofo language

– provides a generic expressive support for the design of complex musical scenarios
between human musicians and computer mediums in real-time interactions

– makes explicit the composer intentions on how computers and musicians are to
perform together (for example should they play in a “call and response” manner,
or should the musician takes the leads, etc.).

This way, the programmer/composer describes the interactive scenario with an augmented
score, where musical objects stand next to computer programs, specifying temporal organi-
zations for their live coordination. During each performance, human musicians “implement”
the instrumental part of the score, while the system evaluates the electronic part taking into
account the information provided by the listening module.

Brief history of Antescofo

The Antescofo project started in 2007 as a joint project between a researcher (Arshia Cont)
and a composer (Marco Stroppa) with the aim of composing an interactive piece for saxophone
and live computer programs where the system acts as a Cyber Physical Music System. It
rapidly became a system that couples a simple action language and machine listening.

The language was further used by other composers such as Jonathan Harvey, Philippe
Manoury, Emmanuel Nunes and the system has been featured in world-class music concerts with
ensembles such as the Los Angeles Philharmonic, New York Philharmonic, Berlin Philharmonic,
BBC Orchestra and more.

In 2011, two computer scientists (Jean-Louis Giavitto from CNRS and Florent Jacquemard
from Inria) joined the team and serious development on the language started with participation
of José Echeveste (whose PhD was on Antescofo unique synchronization capabilities) and
Philippe Cuvilier (whose PhD was on the use of temporal information in the listening machine).
The new team MuTant was baptized during early 2012 as a joint venture between Ircam,
CNRS, Inria and UPMC in Paris.

STRUCTURE OF AN ANTESCOFO SCORE 25

Figure 2: synchro score performance

Antescofo has developped incrementally in line with user requests. The current language is
highly dynamic and addresses requests from more than 40 serious artists using the system
for their own artistic creation. Besides its incremental development with users and artists,
the language is highly inspired by Synchronous Reactive languages such as ESTEREL and
Cyber-Physical Systems.

A historical example: “Anthèmes 2” by Pierre Boulez.

Structure of an Antescofo Score

An Antescofo score is a text file that is used for real-time score following (detecting the position
and tempo of live musicians in a given score) and triggering electronics as written by the
artists.

Antescofo is thus used for computer arts involving live interaction and synchronisation
between human and computerised actions.

An Antescofo score can be edited by any text editor. The users can find many syntax
highlights on our Antescofo ForumUser. The package for the Sublime editor is particularly
usefull, as coherence is preserved in real-time between the score loaded in Max and the score
edited by Sublime.

There is also a dedicated GUI, AscoGraph, that can be used to edit an Antescofo score
and to interact with a running Antescofo program. In this video, for example, we can see
Antescofo playing with a musician and controlling both the electronic elements and the
spatialization. The musician’s score (in a piano roll) and the electronic actions are both visible
in the AscoGraph window.

http://forumnet.ircam.fr/user-groups/antescofo/index.html
http://forumnet.ircam.fr/user-groups/ascograph/index.html
http://forumnet.ircam.fr/user-groups/ascograph/index.html

26 LIST OF FIGURES

An interweaving of musical events and electronic actions

An Antescofo score describes both the human actions to be recognized and the machine’s
reactions to environmental input. A score thus has two main elements:

• EVENTS are elements to be recognized by the score follower or machine listener,
describing the dynamics of the outside environment. They consist of NOTE, CHORD,
TRILL and other elements discussed in details in section Event.

• ACTIONS are elements to be undertaken once corresponding event(s) or conditions
have been recognized. Actions in Antescofo extend the good-old qlist object elements in
MAX and PD with additional features which will be described in this document.

The figure below shows a simple example from the Composer Tutorial on Pierre Boulez’
“Anthèmes 2” (1997) for violin and live electronics as seen in Ascograph (open the picture in a
new tab for a larger view).

Figure 3: Antescofo Score Excerpt showing basic events and actions

The left window shows a visual representation of Events and Actions, whereas the right
segment shows the raw text score. Events in the score describe expected notes, trills and
grace notes from the solo Violin, and Actions specify messages to be sent upon recognition
of each event. In this example, we showcase actions for four real-time pitch shifter (or
harmoniser), whose general volume is controlled by the hr-out-db parameter, and each
shifter parameter separately controlled by hr1-p to hr4-p. The values for pitch shifters
are in pitch-scale factor. Their corresponding musical value is described in the text score as
comments (any text following a semi-colon ‘;’ is ignored in the score).

This score shows basic use of actions and events. Red text in the text-editor correspond to
reserved keyword for Events. For details regarding available events and their corresponding
syntax, see section Event. In this example, actions are basic message-passing to receivers in
Max or Pd environments but with OSC, Antescofo can interact with many other softwares
like CSound, Supercollider. . . Since they are isolated and discrete actions, we refer to them

events/index.html
events/index.html

STRUCTURE OF AN ANTESCOFO SCORE 27

as Atomic Actions. As will be shown later, actions in Antescofo can use delays expressed
in various time formats, and further include dynamic (i.e. real-time evaluated) expressions,
data-structures and more. Details on action structures are discussed in section Actions.

The next figure shows a slightly more complex score corresponding to the beginning of
“Tesla ou l’effet d’étrangeté” (2014) by composer Julia Blondeau for viola and live electronics
as seen in Ascograph. The graphical representation on the left is a visual interpretation of
the text score on the right. For easier viewing, messages are represented here by white circles
(AscoGraph option).

Figure 4: The beginning of Tesla (2014) by Julia Blondeau for Viola and Live electronics in
AscoGraph

In the previous screenshot, the score for human musician contains many types of events
(not all visible in text) with a mixture of discrete and continuous compound actions as written
by the composer. At the moment you have to know that in Antescofo it exists 5 kinds of
events :

• NOTE : in red in the piano roll
• CHORD : in green in the piano roll
• TRILL for classical trill or tremolo : in blue in the piano roll
• MULTI for glissandi (with one or more notes) : in yellow in the piano roll
• EVENT for symbolic events

Tesla makes use of Compound Actions which consist of parallel groupings of Atomic
Actions, as well as continuous actions introduced by keyword Curve. These elements
correspond to different electronic actions. We can therefore compose the electronic part
in parallel with the instrument part, together in an “augmented score”. Effects, synthesis,

action/index.html

28 LIST OF FIGURES

spatialization and others can be controlled by Antescofo. Functions, Processes, Actors (objects)
and Macros can be used to abstract and reuse these controls.

We will see that with Antescofo, we can compose with many differents kind of time.
Sequential time for the atomic actions, continuous time for curves, cyclic time for loop or
“composed time” with processus that will see in due course.

The file structure of an Antescofo augmented score

A textual score, or program, is written in a single file and loaded from there. The file itself
can optionally include pointers to other score files, using the @insert feature:

@insert macro.asco.txt
@insert "file name with white space must be quoted"

The keyword can be capitalized: @INSERT as any other predefined @-identifier (i.e.,
identifiers that start with a @ character). An included file may includes other files. The
@insert command is often used to store definitions and initialisation of the main Antescofo
score. It will automatically create additional tabs in Ascograph text editor.

The @insert_once command is similar to @insert except that the file is included only
once in the current score, when the directive is encountered the first time. The behavior makes
possible to include a library of primitives in a set of files without the burden of taking care of
their dependencies.

For the rest of this chapter, we will briefly introduce main elements in the language. Details
will be left for dedicated chapters in the reference manual.

Elements of an Antescofo Score

An Antescofo program is a sequence of events and actions. Events, recognized by the listening
machine, are described in detail in chapter Events. Actions, outlined in chapter Actions are
computations triggered upon the occurrence of an event or of another action. Actions can
be dynamically parameterized by expressions and data structures, evaluated in real-time and
described in detail in the Reference Manual.

Elements of the language can be categorized into six groups that correspond to various
constructions permitted in the language:

• Comments: Any text starting by a semi-colon ; or // is considered a comment and
ignored by parser until the end of line (inline comment).
Block (multi-line) C-Style comments starting with /*and ending with */ are also
allowed.

• Keywords: are reserved words that introduce either Event or Action constructions.
Examples include Note (for events) and Group (for compound actions).

• Simple identifiers: denote Max or PD receivers and are also used to specify the label
of a musical event or of an action.

/Reference/1-intro/index.html
/UserGuide/events/index.html
/Reference/action_ref/index.html
/Reference/1-intro/index.html

ELEMENTS OF AN ANTESCOFO SCORE 29

• @-identifiers: are words that start with @ character. They either introduce a new
definition or denote predefined functions, user-defined functions, user-defined macros,
action attributes, or event attributes. The following @-identifiers are used to introduce
new definitions: @abort @broadcast @fun_def @init @macro_def
@obj_def @pattern_def @proc_def @track_def @whenever.

• **−identifiers∗∗ : arewordsthatstartwith‘‘ character. They correspond to user-defined
variables or parameters in functions, processes, and object or macro definitions.

• ::-identifiers: words starting with ::, obj::, pattern:: or track:: refer
respectively to processes, objects (actors), patterns or tracks.

User defined score elements including macros, processes and functions can only be employed
after their definition in the score. We suggest putting them at the beginning of the file or to
put them in a separate file using the @insert command. They will be discussed in proceeding
chapters.

Simple identifiers: Antescofo keywords and reference to the host environ-
ment

The Antecofo language comes with a list Reserved Keywords for defining elementary score
structures. Reserved keywords are case insensitive. They can be divided in two groups:

• Event Keywords including NOTE, CHORD, TRILL and MULTI introduce musical
events (see chapter Event in Antescofo) and are used to describe the music score to be
recognised.

• Action Keywords, such as GROUP, LOOP and more, specify computations that can
be instantaneous (Atomic actions) or containers for other actions that have a duration
(Compound actions).

Here is an example:

NOTE 60 1/2
rcvr1 harm1 60 87 0.5
rcvr2 ampSy 0.8 2

NOTE 62 1
rcvr1 harm1 87 78 1.5
1/2 print HELLO

In the example above, rcvr1 harm1 60 87 0.5 and rcvr2 ampSy 0.8 2 are actions
that are hooked to event NOTE 60 1/2, and 1/2 print HELLO denotes an action (sending
to a receiver print in max/pd) with a delay of half-beat time. General syntax for atomic
actions is described in chapter Atomic Actions.

Event keywords can not be nested inside Action blocks. Event keywords are always defined
at the top-level of the text score. Action keywords and blocks can be nested as will be discussed
later.

The example shows another use of a simple identifiers: rcvr1, rcvr2, harm1 ampSy and
print are simple identifiers but are not reserved keywords. Here they refer to a receiver or a

/Reference/2-syntax/index.html#antescofo-keywords
events/index.html
/Reference/3-atomic/index.html
/Reference/4-compound/index.html
/Reference/3-atomic/index.html

30 LIST OF FIGURES

symbol in Max/PD. Simple identifiers that are not reserved keywords are case sensitive. In
case a score requires the user to employ a reserved keyword inside a message, the user should
wrap the keyword in quotes to avoid clash.

REMARK: An Antescofo text score is interpreted from top to bottom. In this
sense, Event Sequence commands such as BPM or variance will affect lines that
follow their appearance.

Example: The figure shows two simple scores. In the left score, the second tempo change
to 90 BPM will be effective starting on the event with label Measure2 and as a consequence,
the delay 1/2 for its corresponding action is launched with 90 BPM. On the other hand,
in the right score the tempo change will affect the chord following that event onwards and
consequently, the action delay of 1/2 beat-time hooked on note C5 corresponds to a score
tempo of 60 BPM.

BPM 60
NOTE C4 1.0 Measure
CHORD (C4 E4) 2.0
NOTE G4 1.0
BPM 90
NOTE C5 1.0 Measure2

1/2 print action1
CHORD (C5 E5) 2.0
NOTE A4 1.0

BPM 60
NOTE C4 1.0 Measure1
CHORD (C4 E4) 2.0
NOTE G4 1.0
NOTE C5 1.0 Measure2

1/2 print action1
BPM 90
CHORD (C5 E5) 2.0
NOTE A4 1.0

@-identifiers: Functions, Macros, and Attributes

A word begining with a ‘@’ character is called a @-identifier. They have five purposes in
Antecofo language:

1. in the processing of a file, some commands directly affect the parsing of this file: the
@insert command is used to insert another file, and the commands @uid and @lid
are used to generate on-the-fly fresh identifiers;

2. to introduce new definitions (functions, processes, tracks, patterns, etc.);

3. to specify various attributes of an event or an action;

4. to call internal functions that comes with Antecofo language as listed in chapter Library
Functions;

/Library/Functions/00intro/index.html
/Library/Functions/00intro/index.html

$-IDENTIFIERS : VARIABLES AND PARAMETERS 31

5. and to call user-defined functions or macros.

Only ! ? . and _ are allowed as special (non alphanumeric) characters after the @.
Note that in the first three cases, @-identifiers are reserved identifiers and thus are case

unsensitive, that is @tight, @TiGhT and @TIGHT are the same keyword. Reserved @-
identifiers are listed here.

Users can define their own functions as shown in chapter Functions. These @-identifiers are
case sensitive. Predefined functions are listed here.

$-identifiers : Variables and Parameters

$-identifiers like $id or $id_1 are simple identifiers prefixed with a dollar sign. Only ! ? .
and _ are allowed as special characters after the $. $-identifier are used to give a name to
variables (see section variables and as parameters for function, process and macro definition
arguments. They are case-sensitive.

The figure below shows a rewrite of the excerpt of Pierre Boulez’ “Anthèmes 2” given here
using a simple macro and employing basic @ and $ identifiers. The harmoniser command
is here defined as a macro for convenience and since it is being repeated through the same
pattern. The content of the hr1-p to hr4-p actions inside the Macro use a mathematical
expression using the internal function @pow to convert semi-tones to pitch-scale factor. As a
result the Antescofo score is shorter and musically more readable. Variables passed to the
macro definitions are $-identifiers.

You can learn more on expressions and variables in chapter expression onwards.

Figure 5: Rewrite of Figure [fig:a2-ex2] using a Macro and expressions

/Reference/2-syntax/index.html#-identifiers-functions-macros-and-attributes
/Reference/9-functions/index.html
/Library/Functions/00intro/index.html#alphabetical-listing-of-antescofo-predefined-functions
/Reference/6-expression/index.html#variables
structure/index.html#an-interweaving-of-musical-events-and-electronic-actions
/Reference/11-macros/index.html
/Reference/6-expression/index.html

32 LIST OF FIGURES

::-identifiers : Processes

::-identifiers like ::P or ::q1 are simple identifier prefixed with two semi-columns. ::-identifiers
are used to give a name to processus (see chapter Process).

/Reference/10-process/index.html

Chapter 1

Events

An event in Antescofo terminology refers to elements that define what will probably happen
outside your computers for real-time detection and recognition. In regular usage, they describe
the music score to be played by the musician to follow. They are used by the listening machine
to detect position and tempo of the musician (along other inferred parameters) which are by
themselves used by the reactive and scheduling machine of Antescofo to produce synchronized
accompaniments.

The listening machine is in charge of real-time automatic alignment of an audio stream
played by one or more musicians, into a symbolic musical score described by Events. The
Antescofo listening machine is polyphonic and constantly decodes the tempo of the live
performer. This is achieved through explicit time models inspired by cognitive models of
musical synchrony in the brain which provide both the tempo of the musician in real-time and
also the anticipated position of future events (used for real-time scheduling).

This section describes Events and their syntax in Antescofo language. In a regular workflow,
they can come from pre-composed music scores using MusicXML or MIDI import (see
section score import). They can also be composed directly into the Antescofo text program.

Event Specification

Events are detected by the listening machine in the audio stream. The specification of an
event starts by a keyword defining the kind of event expected and some additional parameters:

NOTE pitch duration [label]
CHORD (pitch_list) duration [label]
TRILL ((pitch_list)*) duration [label]
MULTI ((pitch_list)*) duration [label]
MULTI (pitch_list) -> (pitch_list)) duration [label]

Here the ’*’ is a metacharacter meaning “zero or more repetitions” of the preceeding
construction. Elements between square brackets ’[’ and ’]’ are optional but parentheses are
literal elements that do appear in the code (they are not metacharacters).

TRILL and MULTI are examples of compound events organizing a set of NOTEs in time.
Thus they can accept one or several pitch_lists. pitch_lists in TRILL and MULTI are

33

/UserGuide/workflow_editing/index.html#importing-scores-to-antescofo-import-of-midi-files-and-of-musicxml-files

34 CHAPTER 1. EVENTS

distinguished by their surrounding parentheses. See the next section for a more musically
oriented explanation.

Events specification can be optionally followed by some attributes as discussed in the Event
Attributes section below. Events must end by a carriage return. In other word, you are allowed
to define only one event per line.

There is an additional kind of event

EVENT d

also followed by a mandatory duration d, which correspond to a fake event triggered
manually by the “nextevent” button on the graphical interface or by the “nextevent” message
to the antescofo object in MAx/PD.

Parameters for event specification are described below.

Pitch
pitch (used in NOTE) can take the following forms:

• MIDI number (e.g. 69 and 70),

• MIDI cent number (e.g. 6900 and 7000),

• Standard Pitch Name (e.g. A4 and A#4).

• For microtonal notations, one can use either MIDI cent (e.g. 6900) or Pitch Name
standard and MIDI cent deviations using ’+’ or ’-’ (e.g. NOTE A4+50 and NOTE
A#4+50 or NOTE B4-50).

CHORD (A4+50 A#4+50 B4-50 Bx4-50 C##4+50 C##4-50)
print OK

• a minus sign - may precede the previous specification to specify that the current note is
a continuation of a note with the same pitch in the preceding event:

CHORD (C4 D5) 1
CHORD (-C4 D3) 1/2

Pitch_list
Pitch_list is a set containing one or more pitches (used to define content of a CHORD). For

example, the following line defines a C-Major chord composed of C4, E4, G4:

CHORD (C4 64 6700)

Duration
Duration is a mandatory specification for all events. The of duration an event is specified

in beats either by an integer (1), the ratio of two integers (4/3) or a float (1.0).

EVENTS AS CONTAINERS 35

Label
Optionally, users can define labels on events as a simple identifier or as a string, useful

for browsing inside the score and for visualisation purposes. For example measure1 is an
accepted label. If you intend to use space or mathematical symbols inside your string, you
should surround them with quotations such as "measure 1" or "measure-1"

Events as Containers

Each event keyword in Antescofo in the above listing can be seen as a container with specific
behavior and given nominal durations. A NOTE is a container of one pitch. A CH0RD contains
a vector of pitches. The figure below shows an example including simple notes and chords
written in Antescofo:

Figure 1.1: chord notation

BPM 60
NOTE C4 1.0
CHORD (D4 F4) 1.0
NOTE 0 1.0 ; a silence
NOTE G4 0.0 ; a grace note with duration zero
NOTE F4 2.0

The two additional keywords TRILL and MULTI also define containers with specific extended
behaviors:

TRILL

Similar to trills in classical music, a TRILL is a container of events either as atomic pitches or
chords, where the internal elements can happen in any specific order. Additionally, internal
events in a TRILL are not obliged to happen in the environment. This way, can be additionally
used to notate improvisation boxes where musicians are free to choose elements. A TRILL
is considered as a global event with a nominal relative duration. Figure below shows basic
examples for Trill.

TRILL (A4 B4) 1.0
NOTE 0 1.0 ; a silence
TRILL ((C5 E5) (D5 F5)) 2.0

36 CHAPTER 1. EVENTS

Figure 1.2: trill notation

MULTI

Similar to TRILL, a MULTI is a compound event (that can contain notes, chords or event
trills) but where the order of actions are to be respected and decoded accordingly in the
listening machine. They can model continuous events such as glissando. Additionally, a MULTI
contents can be trills. To achieve this, it suffices to insert a character after the pitch_list
closure. The next example shows a glissandi between chords written by MULTI.

Figure 1.3: gliss notation

MULTI ((F4 C5) -> (D4 A4)) 4.0

Compound Events

Events can be combined and correspond to specific music notations. For example, a classical
tremolo can be notated as a TRILL with one event (note or chord) inside. The next figure
shows a glissando whose internal elements are tremolo. In this case, the prime ' next to each
chord group indicate that the elements in side the MULTI are TRILL instead of regular notes
or chords.

EVENT ATTRIBUTES 37

Figure 1.4: notation of a tremolo glissendo

MULTI ((C5 G5)' -> (D4 F4)') 2.0

The figure below shows a typical polyphonic situation on piano where the right-hand is
playing a regular trill, and the left hand regular notes and chords. In this case, the score is to
be segmented at each event onset as TRILL whose elements would become the trill element
plus the static notes or chords in the left-hand.

TRILL ((A4 A2) (B4 A2)) 1/2
TRILL ((A4 D3) (B4 D3)) 1/2
TRILL ((A4 C3 E3) (B4 C3 E3)) 1/2
TRILL ((A4 D3) (B4 D3)) 1/2
TRILL (A4 B4) 2.0

Event Attributes

Attributes in Antescofo are keywords following an @ character after the definition of the event.
There are four kinds of event attributes and they are all optional.

• The keyword fermata (or @fermata) specifies that this event has a fermata signature.
A Fermata event can last longer and arriving and leaving it does not contribute to the
tempo decoding of the performance.

38 CHAPTER 1. EVENTS

• The keyword pizz (or @pizz) specifies that the event is a string pizzicato. This usually
helps Score Follower stability.

• The keyword hook (or @hook) specifies that this event cannot be missed (the listening
machine needs to wait the occurrence of this event and cannot presume that it can be
missed).

• The keyword jump (or @jump) is followed by a comma separated list of simple identifiers
referring to the label of an event in the score. This attribute specifies that the event can
be followed by several continuations: the next event in the score, as well as the events
listed by the @jump.

These attribute can be given in any order. For instance:

Note D4 1 here @fermata @jump l1, l2

defines an event labeled by here which is potentially followed by the next event (in the
file) or the events labeled by l1 or l2 in the score. It has a fermata attribute. Note that

Note D4 1 @jump l1, l2 here

corresponds to the same specification: here is not interpreted as the argument of the jump
but as a label for the event because there is no comma after l2.

Event Label

A simple identifier or a string or an integer acts as a label for this event. There can be several
such labels. If the label is a simple identifier, its $-form can be used in a expression elsewhere
in the score to denote the time in beat of the onset of the event.

The @modulate Attribute

The @modulate attribute can be used on a BPM specification, not on an event. It specifies
that the tempo must be modulated to the pro rata of the actual tempo of the performer. For
example, if a BPM 60 is specified in the score, and the actual tempo of the performance if
70, then an indication of BPM 80 @modulate reset the tempo expected by the listening
machine to 80× 70

60 ' 93.3.

Chapter 2

Actions in Brief

Think of actions as what Antescofo undertakes as a result of arriving at an instant in time.
In traditional practices of interactive music, actions are message passing through qlist object
in Max/Pd (or alternatively message boxes or COLL, PATTR objects in MAX). Actions in
Antescofo allow more explicit organization of computer reactions over time and also with
regards to themselves. See section message for a detailed description of the message passing
mechanism.

Actions are divided into atomic actions performing an elementary computation or simple
message passing, and compound actions. Compound actions group other actions allowing
polyphony, loops and interpolated curves. An action is triggered by the event or the action
that immediately precedes it.

In the new syntax, an action, either atomic or compound, starts with an optional delay, as
defined hereafter. The old syntax for compound action, where the delay is after the keyword,
is still recognized.

Action Attributes
Each action has some optional attributes which appear as a comma separated list:

atomic_action @att1, @att2 := value
compound_action @att1, @att2 := value { ... }

In this example, @att1 is an attribute limited to one keyword, and @att2 is an attribute
that require a parameter. The parameter is given after the optional sign :=.

Some attributes are specific to some kind of actions. There is however one attribute that
can be specified for all actions: label. It is described in section Action Label. The attributes
specific to a given kind of action are described in the section dedicated to this kind of action.

Delays

An optional specification of a delay d can be given before any action a. This defines the amount
of time between the previous event or the previous action in the score and the computation
of a. At the expiration of the delay, we say that the action is fired (we use also the word
triggered or launched). Thus, the following sequence

39

/Reference/atomic_messages/index.html
/UserGuide/action/index.html#label

40 CHAPTER 2. ACTIONS IN BRIEF

NOTE C3 2.0
d1 action1
d2 action2

NOTE D3 1.0

specifies that, in an ideal performance that adheres strictly to the temporal constraint
specified in the score, action1 will be fired d1 after the recognition of the C note, and
action2 will be triggered d2 after the launching of action1.

A delay can be any expression. This expression is evaluated when the preceding event
is launched. That is, expression d2 is evaluated in the logical instant where action1 is
computed. If the result is not a number, an error is signaled.

Zero Delay
The absence of a delay is equivalent to a zero delay. A zero-delayed action is launched

synchronously with the preceding action or with the recognition of its associated event.
Synchronous actions are performed in the same logical instant and last zero time, cf. para-
graph Logical Instant.

Absolute and Relative Delay
A delay can be either absolute or relative. An absolute delay is expressed in seconds or

milliseconds and refers to wall clock time or physical time. The qualifier s (respectively ms) is
used to denote an absolute delay:

a0
1 s a1

(2*$v) ms a2

Action a1 occurs one second after a0 and a2 occurs (2*$v) milliseconds after a1. If the
qualifier s or ms is missing, the delay is expressed in beats and it is relative to the tempo of
the enclosing group (see section local tempo).

Evaluation of a Delay
In the previous example, the computed value of a2’s delay may depend of the date of the

computation (for instance, the variable may be updated somewhere else in parallel). So, it is
important to know when the computation of a delay occurs: it takes place when the previous
action is launched, since the launching of this action is also the start of the delay. And the
delay of the first action in a group is computed when the group is launched.

A second remark is that, once computed, the delay itself is not reevaluated until its
expiration. However, the delay can be expressed in the relative tempo or relatively to a
computed tempo and its mapping into the physical time is reevaluated as needed, that is,
when the tempo changes.

Synchronization Strategies
Delays can be seen as temporal relationships between actions. There are several ways,

called synchronization strategies, to implement these temporal relationships at runtime. For

/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages
/Reference/compound_group/index.html#local-tempo

LABEL 41

instance, assuming that in the first example of this section action2 actually occurs after
the occurrence of NOTE D, one may count a delay of d1 + d2 - 2.0 starting from NOTE D
after launching action2. This approach will be for instance more tightly coupled with the
stream of musical events. Synchronization strategies are discussed in section synchronization
strategies.

Label

Labels are used to refer to actions. Like events, actions can be labeled with

• a simple identifier,

• a string,

• an integer.

The labels of an action are specified using the @name keyword:

... @name := somelabel

... @name somelabel

One action can have several labels. Unlike with event labels, the $-identifier associated
with an action label cannot be used to refer to the relative position of this action in the score1.

Compound actions have an optional identifier (section compound action). This is a simple
identifier and acts as a label for the action without the burden to explicitly use the @name
attribute.

Action Execution

We write at the beginning of this chapter that actions are performed when arriving at an
instant in time. But the specification of this date can take several forms. It can be

• the occurrence of a musical event;

• the occurrence of a logical event (see the whenever construction page and the pattern
specification at page Whenever);

• the loading of the score (cf. the @eval_when_load construct at page Eval when Load);

• the signal spanned by an @abort action (see abort handler at page Abort);

• the sampling of a curve construct (page Curve);

• the instance of an iterative construct (pages Loop and ForAll);

• or the expiration of a delay starting with the triggering of another action.

1The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

/Reference/time_synchro/index.html
/Reference/time_synchro/index.html
/Reference/4-compound/index.html
/Reference/compound_whenever/index.html
/Reference/eval_load/index.html
/Reference/atomic_termination/index.html
/Reference/compound_curve/index.html
/Reference/compound_loop/index.html
/Reference/compound_forall/index.html
http://en.wikipedia.org/wiki/Regular_expression

42 CHAPTER 2. ACTIONS IN BRIEF

Chapter 3

A Brief overview of Antescofo
features

This section introduces some features that are very useful, especially for composers. If you are
interested to learn more, take a look at the corresponding chapters in the Antescofo reference.
Remember that everything having to do with control in Max or PD could certainly be replaced
by an Antescofo Program. You will see that you can easily manage tabs, lists and some
features that you need to control all the parameters of a concert patch.

A useful action : the curve

One of Antescofo’s useful Keywords is the curve. Many composers use automations in their
sequencers or use some “line” in Max. In Antescofo, you can write a large ensemble of curves
(with many interpolation types) and create a score that controls all the effects, spatialization
and synthesis with this curves. All the receivers in your Max or PD patch can receive the
updated variable controlled by a curve.

The example below shows 3 simple curves with different types of interpolation. A receiver
named “print” will receive the variables $x, $y and $z.

Make your life easier with macros !

Frequently, we use a same function that need some parameters in different moment of a piece.
So you need to write many lines for a unique effect or synthesis. With a macro, you can denote
that some parameters define a single musical entity. We think that is important to can choose
between some writing style. Some different ways of thinking need different ways of writing !

The next example shows two ways to write a same thing.

; EXAMPLE 1 : the good old Q-list style !
NOTE 60 1

SPAT_REV 0.2
SPAT_X 1.
SPAT_Y 0.8

43

44 CHAPTER 3. A BRIEF OVERVIEW OF ANTESCOFO FEATURES

Figure 3.1: An example of curve

AddSynt_Hn 8
AddSynt_F0 888
AddSynt_Rev 1.4
AddSynt_Mod 0.1

NOTE 69 2
SPAT_REV 0.8
SPAT_X 0.
SPAT_Y 1.2

AddSynt_Hn 6
AddSynt_F0 1857
AddSynt_Rev 1.8
AddSynt_Mod 0.

NOTE 63 4
SPAT_REV 3.2
SPAT_X 2.
SPAT_Y 0.

AddSynt_Hn 14
AddSynt_F0 68.4
AddSynt_Rev 2.3
AddSynt_Mod 0.002

; EXAMPLE 2 : In another way....

@macro_def SPAT ($REV, $X, $Y)
{

SPAT_REV $REV
SPAT_X $X

TOUR THE LOOP 45

SPAT_Y $Y
}

@macro_def AddSynt ($Hn, $F0, $Rev, $Mod)
{

AddSynt_Hn $Hn
AddSynt_F0 $F0
AddSynt_Rev $Rev
AddSynt_Mod $Mod

}

NOTE 60 1
@SPAT(0.2, 1., 0.8)
@AddSynt(8, 888, 1.4, 0.1)

NOTE 69 2
@SPAT(0.8, 0., 1.2)
@AddSynt(6, 1857, 1.8, 0.)

NOTE 63 4
@SPAT(3.2, 2., 0.)
@AddSynt(14, 68.4, 2.3, 0.002)

Tour the loop

Sometimes, the situation calls for a loop (ask to Steve Reich!). You can use many loops and
imbricated loops in Antescofo. For example, you can include a curve in a loop and dynamically
modify it while advancing the the loop time. There are many ways to end a loop. Guess what
will happen in the following examples:

loop ForEver 1
{ print "Try again!" } ; an "infinite" loop...

3.5 abort ForEver ; ... that you have the power to finish !
print "That's enough!"

;--
$cpt := 0
loop L 1.5

{
$cpt := $cpt + 1

0.5 print a1
0.5 print a2

} until ($cpt >= 3) ; A conditional end

;--
; the same with an another type of abort
loop L 1.5

46 CHAPTER 3. A BRIEF OVERVIEW OF ANTESCOFO FEATURES

{
print a0

0.5 print a1
0.5 print a2

} during [4.5] ; A temporal constraint

Build your own world

In Antescofo, you can create your own functions (see @fun_def) if you frequently need to
carry out the same task (to set a diapason, for example). There are many features that help
create musical entities and facilitate electronic score writing.

Why do you need data structures. . .

Data structures come in handy in many situations. Some effects and syntheses involve a long
list of parameters. In the Data Structures chapter, you will see many ways to create and
manipulate different kinds of lists and data structures (see map and tab).

In the classical music notation, there are many symbols that each denote an ensemble
of parameters. These symbols permit the musician to focus on the music and not on the
parameters. You can have the same approach in Antescofo if you use macros, processes and
data structures. For example, if you use a physical model for synthesis, it’s very laborious to
enumerate all the parameters in your score. In this case, you can use an ensemble of tabs as
a “playing mode” library. So in your score, you will just have to write the name of the tab
and not the ensemble of parameters. Like when you write Sul ponticello you don’t have to
describe to the musicians how to play that !

The figure below shows a short library for a string physical model and a process that
permits interpolation between two “playing modes”. Don’t worry about understanding all the
syntax (that’s what the reference manual is for) but remember that it’s possible!

/yet-to-be-written.html
/Reference/data-tab/index.html
/Reference/1-intro/index.html

BUILD YOUR OWN WORLD 47

You can use the same type of program to write a “spatialization” library (see the Stroppa/-
Cont Library) where you can write a simple command in the score that will make a complex
movement in the space.

In processes we trust

If you have to create complex processes that can heard some extra-parameters of the score (like
audio descriptors, patterns. . . .), Antescofo provides some dynamic features like the whenever
or the processus that permit to write a real musical entity with some musical evolutions.

This process are different, in the way of thinking, of the classical score. The process is
a kind of “deamon” that can be launched when it’s needed and that can be aborted at the
good moment. The process move in parallel with the score but take account of the musician’s
tempo (see $RT_TEMPO).

In the figure below, a musician can choose a path in an ensemble of short extracts. Different
zones are associated at this extracts. In the score, some atomic actions are classicatly played
with the score of musician, in a sequencial way. In parralel, a process is launched and evolve
depending on area where the musician is. The process can be seeing as an entity that evolve

48 CHAPTER 3. A BRIEF OVERVIEW OF ANTESCOFO FEATURES

both with the musician and its own independant evolutions.

Figure 3.2: Process

Create your own process, macro and function library that you use in all of your pieces.

A conditional world

Sometimes we need to specify conditional actions. In Antescofo, the constructions if and
switch are made for that. A conditional action is a compound action that performs different
actions depending on whether a programmer-specified boolean condition evaluates to true or
false.

You want launch a group of actions only if the musician plays at a particular amplitude ?
You have to use this kind of code :

if ($musAmp >= 1.2)
{

synt_receiver bang
}
else
{

print "Hey! You're playing too softly!"
}

But, note that this kind of if is evaluated when it is launched. So. . . it is useful but you
maybe have to watch at variable during all the time of the performance. In this context, you

BECOME THE TIME MASTER 49

need a dynamic construction that look permanently the value of your variable. You need the
whenever construction! In the same idea of before, if you want to know when your musician
is playing too loud, you can write something like this :

whenever ($musAmp >= 1.2)
{

synt_receiver bang
}

When the whenever statement is launched, the variable that it’s given is permanently
monitored and you will always know when the whenever’s condition is true.

It’s as easy as pie!

Become the time master

In Antescofo, all the electronic actions are launched in the musician’s time. The internal
variable $RT_TEMPO give the tempo of the musician in real time. So, when you write your
score, you can be sure that it will be synchronize with the musician (if you interested by the
synchronization question, take a look at the chapter Synchronization Strategies).

It’s great ! But. . . , perhaps you would like to impose your time ! And, maybe, you had
written an electronic phrase that sound too steep and you would like to introduce more softness
in the “electronic phrasing”. You can want to write an accelerando, but write the absolute
time values is so laborious. . . .

So, in Antescofo language, all the group, process, loop, curve . . . can be “time controlled”.
This means that for each group, you can impose a tempo (BPM) or better: an evolution of
tempo !

The attribute @tempo is made for that. If you see the previous example, you can see that
for two periods of time, the process is like “time freezed” and you can see ::antescofo
$tempo := 0 that is a simple example where you can stop for a moment any instance if you
put its tempo at 0.

In the next example, a group fusee composed with atomic actions ::ASCOtoCS_points
... is time controlled by the variable $tempfusee. This variable is modified in time by a
curve that give a phrasing to the group.

/Reference/time_synchro/index.html
/Reference/10-process/index.html

50 CHAPTER 3. A BRIEF OVERVIEW OF ANTESCOFO FEATURES

Chapter 4

Management of Time

The language developed in Antescofo can be seen as a domain specific synchronous and timed
reactive language in which the accompaniment actions of a mixed score are specified together
with the instrumental part to follow. It thus takes care of timely delivery, coordination and
synchronisation of actions with regards to the external environment (musicians) using machine
listening.

Experienced users should note that is delivered with its own Real-time Scheduler. This is
mainly to reduce utility costs of using internal Max and Pd timers and to significantly reduce
their interference with other actions in Max/Pd schedulers themselves. The internal scheduler
is new since version 0.5 onwards. It is sketched briefly in this chapter.

Actions are computations triggered after a delay that elapses starting from the occurrence
of an event or another action. In this way, Antescofo is both a reactive system, where
computations are triggered by the occurrence of an event, and a timed system, where
computations are triggered at some date. The three main components of the system architecture
are sketched in the figure below:

• The scheduler takes care of the various time coordinate specified in the score and manage
all delays, wait time and pending tasks.

• The environment handle the memory store of the system: the history of the variables,
the management of references and all the notification and event signalization.

• The evaluation engine is in charge of parsing the score and of the instantaneous evaluation
of the expressions and of the actions.

An action is launched because the recognition of a musical event, a notification of the external
environment (i.e., external assignment of a variable or the reception of an OSC message),
internal variable assignment by the functioning of the program itself, or the expiration of a
delay. Actions are launched after a delay which can be expressed in various time coordinate.

There are several temporal coordinate systems that can be used to locate the occurrence of
an event or an action and to define a duration.

Logical Instant

A logical instant is an instant in time distinguished because it corresponds to:

51

52 CHAPTER 4. MANAGEMENT OF TIME

Figure 4.1: antescofo_architecture

• the recognition of a musical event;

• the assignment of a variable by the external environment (e.g. through an OSC message
or a MAX/PD binding);

• the expiration of a delay.

Such an instant has a date (i.e. a coordinate) in each time coordinate system. The notion
of logical instants is instrumental to maintaining the synchronous abstraction of actions (i.e.
the idea that two actions may occur simultaneously) and to reduce temporal approximation.
Whenever a logical instant is started, the internal variables $NOW (current date in the physical
time frame) and (current date in the relative time frame) $RNOW are updated, see section system
variables. Within the same logical instant, synchronous actions are performed sequentially in
the same order as in the score.

Computations are supposed to take no time and thus, atomic actions are performed inside
one logical instant of zero duration. This abstraction is a useful simplification to understand
the scheduling of actions in a score. In the real world, computations take time but this time
can be usually ignored and does not disturb the scheduling planned at the score level.

In the figure below, the sequence of synchronous actions appears in the vertical axis. So
this axis corresponds to the dependency between simultaneous computations. Notice that the
(vertical) height of a box is used to represent the logical dependencies while the (horizontal)
length of a box represents a duration in time. Note for example that even if durations of a1 and
a2 are both zero, the execution order of actions a0, a1 and a2 is the same as the appearance
order in the score.

/Reference/exp_variable/index.html#antescofo-system-variables
/Reference/exp_variable/index.html#antescofo-system-variables

LOGICAL INSTANT 53

Figure 4.2: logical and physical time

54 CHAPTER 4. MANAGEMENT OF TIME

Time Coordinate

A time coordinate system is used to interpret delays and to give a date to the occurrence
of an event or to the launching of an action. Two frames of reference are commonly used:

• the physical time P expressed in seconds and measured by a clock (also called wall clock
time),

• and the relative time which measure the progression of the performance in the score or
in a sequence of actions. The position in the score is measured in beats. The relative
time is relative to a tempo.

A tempo specifies the “passing of time” relatively to the physical time1. In short, a tempo
is expressed as a number of beats per minutes.

Programmers may introduce their own tempo local to a group of actions using a dedicated
attribute [@tempo]. The corresponding coordinate systems is then used for all relative delays
and datation used in the actions within this group. The tempo expression is evaluated
continuously in time for dynamically computing the relationships specified by equation

tT =
∫ tP

0
TT

linking the date tP of the occurrence of an event in the physical time and the date tT of the
same event in the relative time T .

Antescofo provides a predefined dynamic tempo variable through the system variable
$RT_TEMPO. This tempo is refered as “the tempo” and has a tremendous importance because
it is the time frame naturally associated with the musician part of the score2. This variable
is extracted from the audio stream by the listening machine, relying on cognitive model of
musician behavior3. The corresponding time coordinate system is used when we speak of
“relative time” without additional qualifier.

Locating an Action in Time

Given a time coordinate, there are several ways to implement the specification of the occurrence
of an action. For instance, consider action a2 in the above figure and suppose that d1 + d2 is
greater than 1.5 beat (the duration of the event NOTE e1. Then action a2 can be launched
either:

• (d1 + d2) beats after the occurrence of the event NOTE e1;

1The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

2Inbetweening or tweening is the process of generating intermediate frames between two images to give
the appearance that the first image evolves smoothly into the second image. The page Tweeners illustrates
the standard tweens to control the successive positions of a point, illustrating the use of tweens to control the
apparent speed and to achieve different qualities of movement.

3The equivalent group given here is only an approximation because the grain d is dynamically computed
and adjusted so that curve’s action is executed for each breakpoint boundaries (breakpoint’s duration are not
necessary a multiple of the grain size).

http://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Inbetweening
http://wiki.xbmc.org/?title=Tweeners
http://hosted.zeh.com.br/tweener/docs/en-us/misc/transitions.html

LOCATING AN ACTION IN TIME 55

• or (d1 + d2 − 1.5) beats after the occurrence of the event NOTE e2.

(several other variations are possible).
In the “ideal interpretation of the score”, these two ways of computing the launching date

of action a2 are equivalent because the event NOTE e2 occurs exactly after 1.5 beat after event
NOTE e1. But this is not the case in an actual performance.

Antescofo allows a composer to choose the right way to compute the date of an action in a
time frame, to best match the musical context. This is the purpose of the Synchronization
Strategies.

/Reference/time_synchro/index.html
/Reference/time_synchro/index.html

56 CHAPTER 4. MANAGEMENT OF TIME

Chapter 5

Antescofo Workflow

In this chapter, we will see how to work with Antescofo, from the edition of the score to the
interactions with Max, PureData or other softwares through OSC.

Editing the Score

The first step in the development of an Antescofo Application is probably the authoring of
the augmented score. An augmented score is a text program and can be edited with any text
editor (like Sublime, TextWrangler or Emacs but not with a text processor like Office/Word).

However, Antescofo comes with a companion application: AscoGraph. Ascograph is a
graphical tool that can be used to edit and then to control a running instance of Antescofo
through OSC messages.

Ascograph and Antescofo are two independent applications but the coupling between
Ascograph and an Antescofo instance running in MAX appears transparent for the user: a
double-click on the Antescofo object launches Ascograph, saving a file under Ascograph will
reload the file under the Antescofo object, loading a file under the Antescofo object will open
it under Ascograph, etc.

Ascograph is available in the same bundle as Antescofo on the IRCAM Forum. It is still far
from being stable but can be extremely useful for authoring/visualizing complex scores and
for monitoring your live performances. Your feedback is extremely welcome.

Importing Scores to Antescofo (import of Midi files and of MusicXML files)

Very often, the musical events to follow have already been specified through a score editor
(Finale, Sibelius . . .), or exist as a MIDI score.

It is possible to automatically import MIDI or MusicXML scores to Antescofo format to
spare the burden of rewriting the followed part. This feature is available by drag and dropping
MIDI or MusicXML files into AscoGraph. For multiple instrument score, care should be taken
to extract required part in a separate MIDI or MusicXML file. The result is an Antescofo
score that can then be modified at will.

In the figure below you can see the Antescofo importer that appears when you drag
your score in AscoGraph.

57

58 CHAPTER 5. ANTESCOFO WORKFLOW

Users employing these features should pay attention to the following points:

Importing MIDI scores to Antescofo

The major problem with MIDI format is the absence of grace notes, trills, and glissandi. Such
events will be shown as a series of raw event elements in the score.

Another major issue with MIDI import is the fact that in most cases, timing of note-offs are
not decoded correctly (based on where the MIDI is coming from). Bad offset timing creates
additional event with linked pitches (negative notes) with short durations. To avoid this, we
recommend users to quantize their MIDI files using available software. The Antescofo importer
does not quantize durations.

Importing MusicXML scores to Antescofo

MusicXML is now the standard inter-exchange score format file between various score editing
and visualisation software. It includes high-level vocabulary for events such as trills, grace
notes and glissandi which can be converted to equivalent events. However, decoding and
encoding MusicXML is not necessarily unique for the same score created by different software!

The Antescofo MusicXML import is optimized for MusicXML exports from FINALE
software. Before converting MusicXML score to Antescofo, users are invited to take into
account the following points and to correct their score accordingly, especially for complex
contemporary music scores:

• Avoid using Layers: Merge all voices into one staff/voice before converting to MusicXML
and dragging to Ascograph. XML parsers sometimes generate errors and suppress some
events when conflicts are detected between layers.

• Avoid using Graphical Elements in score editors. For example, Trills can only be
translated to if they are non-graphical.

• If possible, avoid non-traditional note-heads in your editor to assure correct parsing for
events.

• Avoid Hidden elements in your scores (used mostly to create beautiful layouts) as they
can lead to unwanted results during conversion. Verify that durations in your score
correspond to what you see and that they are not defined as hidden in the score.

• Verify your Trill elements after conversion as with some editors they can vary.

This feature is still experimental and we encourage users encountering problems to contact
us through the Online User Group.

Using AscoGraph

As you can see below (open the screenshoot in another tab to have a larger view), the
Ascograph interface contains 3 parts :

• the piano roll, where you can see the musician’s score and the label at the top

USING ASCOGRAPH 59

Figure 5.1: Antescofo Importer

• the action view, where you can see the graphical representation of the electronic score
and where you can manually edit the curves.

• the text editor, where you can edit the musican’s score and the electronic score.

At the top of the ascograph window, there are five buttons that correspond respectively
to the Antescofo functions previous event, stop, play, start and next event that
you can launch directly in your patch.

The play button simply sequences from the beginning of the score to the end, using given
event timing and internal tempi, and undertaking actions wherever available.

The Play string function (Menu/Transport/Play string) only plays the selected part of
your score. This enables to test on the fly Antescofo fragment (only actions are performed,
musical events are ignored) and even allows a limited form of live-coding.

The App Menu

The text Editor menu contains all the functions relevant to the text editor. Included is the
display mode selector, where you can toggle between integrated, floating (default) and hidden.
The View menu retains the functions pertaining to the visual editor.

Color Scheme

AscoGraph comes with a new color scheme for both the text and visual editor. By default, we
provide dark backgrounds for both. The philosophy behind this design choice is the fact that
many of us use AscoGraph during live concerts and bright backgrounds create too much light
on your screens which make things annoying for you and your audience who are most of the
time in the dark.

60 CHAPTER 5. ANTESCOFO WORKFLOW

Figure 5.2: AscoGraph Interface

Many users however prefer working on white background while typing. You can easily
Import a new Color Scheme for AscoGraph’s Text Editor from the Text editor Menu. You
can design your own color scheme by doing an Export Color Scheme from the Text Editor
menu, modify the XML file and import it back. Users interested in classical white background
text editor can import Larry Nelson’s Color Scheme in particular.

Interaction Between Visual and Text Editors in AscoGraph

Clicking on a Musical Event or Action in the Visual Editor will bring the text editor to the
corresponding text. Conversely, Right/Ctrl-click on an event in the text editor takes you to
the corresponding place in the visual editor.

Vertical mouse-wheel (or double-finger on pad) gesture allows you to browse over the
text-editor, as well as horizontal mouse-wheel (double-finger) gesture on the visual editor.

Shortcuts

Holding CMD + mouse scroll: zoom in/out (visual & text editors) CMD + <number> switches
the text editor between the open files (main .asco score and any @INSERT-ed files). You can
also switch using the tabs at the top of the editor.

Edit your curves

Ascograph is also very useful to visualize and edit the curves constructs.
You can Edit Antescofo Curves easily from the Visual Editor. Applying graphical changes

will automatically create the corresponding text into the right place. See Nadir B’s very
userful YouTube Tutorials.

http://forumnet.ircam.fr/user-groups/antescofo/forum/topic/ascograph-0-25-tips/
https://www.youtube.com/playlist?list=PLJ-R9Hd3xi4D5x8du-yWZOy8lGNEdgn4a

AUTOMATIC FILEWATCH: USING ANOTHER TEXT EDITOR 61

To start, you can create a curve after a note with the menu “create/actions/curve”. After
saving the score, if you see the action view, below the piano roll, you can see your curve.

If you click on the arrow at the right of the curve band, the curve is moved on the piano roll,
to see the superpositions and you can add or move the curve’s points. You can also choose
the type of the interpolation between each points.

Figure 5.3: curve edition with Ascograph

Automatic Filewatch: Using Another Text Editor

Starting with AscoGraph version 0.25, there is an Automatic Filewatch integrated into
the editor. This means that you can now use any of your favourite text editors instead of
AscoGraph. The moment you save the Antescofo Score outside, it’ll be automatically loaded
(and visualized) in the AscoGraph window without any intervention. And the Antescofo object
will reload the score automatically !

So you can use in parallel the Piano Roll and action view and still use your favorite text
editor.

62 CHAPTER 5. ANTESCOFO WORKFLOW

The addition of the Automatic Filewatch feature just makes score editing with AscoGraph
more coherent with other editors as they all integrate automatic filewatch as well.

Max users can also use the Antescofo Max Object Autowatch attribute. This means that
if the loaded score is modified elsewhere, it’ll be automatically reloaded in the Max object.
Obviously, you’d want to turn this attribute off during live concerts! Autowatch is currently
not available for PureData objects but upcoming.

For the people that prefer use their own beloved text editor, we have created some syntax
highlightings for Sublime Text, TextWrangler and. . . emacs ! You have just to download
them in our Forum.

Styling your score

Antescofo scores can be pretty big and it is important to grasp the elements at first glance. A
syntax highlighter is included in Ascograph and third party packages exist for Sublime and
Atom, look at our Forum.

Antescofo scores can also be embedded in markdown (as illustrated by this documentation)
using the Pygment highlighter or in latex using the lstlisting with a dedicated style.

The automatic indentation provided by editors like Sublime for Antescofo score is basic.
It is always possible to send a printfwd message to the antescofo object. This command
will write a file with an automatically indented version of the score together with various
additional information (depending on the current verbosity). This file can be loaded again
in Antescofo. Notice however that macros are expanded in this score and that the initial
comments are not reported.

Interacting with MAX/PureData

When embedded in MAX, the systems appears as an antescofo~ object that can be used
in a patch. This object presents a fixed interface through its inlets and outlets1.

Inlets

The main inlet is dedicated to the audio input. Antescofo’s default observation mode is “audio”
and based on pitch and can handle multiple pitch scores (and audio). But it is also capable
of handling other inputs, such as control messages and user-defined audio features. To tell
Antescofo what to follow, you need to define the type of input during object instantiation,
after the operator @inlets. The following hardcoded input types are recognized:

• KL is the (default) audio observation module based on (multiple) pitch.

• HZ refers to raw pitch input as control messages in the inlet (e.g. using fiddle~ or yin~
objects).

• MIDI denotes to midi inputs.

1The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

http://forumnet.ircam.fr/user-groups/antescofo/forum/topic/antescofo-useful-tutorials-on-this-forum/
http://forumnet.ircam.fr/user-groups/antescofo/forum/topic/antescofo-useful-tutorials-on-this-forum/
http://forumnet.ircam.fr/user-groups/antescofo/forum/topic/antescofo-useful-tutorials-on-this-forum/
http://en.wikipedia.org/wiki/Regular_expression

INTERACTING WITH MAX/PUREDATA 63

You can also define your own inlets: by putting any other name after the @inlets operator
you are telling Antescofo that this inlet is accepting a LIST. By naming this inlet later in your
score you can assign Antescofo to use the right inlet, using the @inlet to switch the input
stream.

Outlets

By default, there are three Antescofo’s outlets:

• Main outlet (for note index and messages),

• tempo (BPM / Float),

• score label (symbol) plus an additional BANG sent each time a new score is loaded.

Additional (predefined) outlets can be activated by naming them after the @outlets
operator. The following codenames are recognized :

• ANTEIOI Anticipated IOI duration in ms and in runtime relative to detected tempo

• BEATNUM Cumulative score position in beats

• CERTAINTY Antescofo’s live certainty during detections [0,1]

• ENDBANG Bang when the last (non-silence) event in the score is detected

• MIDIOUT

• MISSED

• NOTENUM MIDI pitch number or sequenced list for trills/chords

• SCORETEMPO Current tempo in the original score (BPM)

• TDIST

• TRACE

• VELOCITY

Predefined Messages

The Antescofo object accepts predefined message sent to antescofo-mess1. These messages
correspond to the internal commands described in section internal command.

The setvar command

See section setvar in the Reference Manual.

Sending and Receiving OSC messages

See section OSC message in the Reference Manual.

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_osc/index.html

64 CHAPTER 5. ANTESCOFO WORKFLOW

Preparing the Performance, Rehearsals

Controlling Antescofo from AscoGraph

AscoGraph is very useful in a concert context, when you have to follow the follower to control
the following part of Antescofo and to control what is launched in the Max patch.

The top of the Ascograph window has five buttons that correspond respectively to the
Antescofo function previous event, stop, play, start and next event that you can
launch also directly in your patch.

The play button simply sequences from the beginning of the score to the end, using given
event timing and internal tempi, performing actions wherever available.

The Play string function (Menu/Transport/Play string) plays (evaluates) only the
selected part of your score (restricted to a sequence of actions).

When Antescofo is in follower mode, and AscoGraph is up, the current position infered by
the listening machine is outlined both in the piano roll and in the AscoGraph text editor.

Moving in the Augmented Score

They are several commands (Max/PD messages that can be sent to Antescofo) that are very
useful in rehearsals. The idea is to be able to take over the score deterministically (with correct
electronics) if you are rehearsing for example from “Measure10” (a label in score) onwards and
assuring that things are prepared (or not) once you start from there as if you have performed
everything before. Here is a list of these commands:

Methods with no argument

• start: Sends initialization actions (before first event) and waits for follower

• play: Simulates the score (instrumental+electronics) from the beginning until the end or
until STOP

Methods with label/symbol control

• startfromlabel label : Executes the score from current position to position corresponding
to $label in accelerated more WITHOUT sending messages. Waits for follower (or user
input) right before this position.

• scrubtolabel label : Executes the score from current position to position corresponding
to $label in accelerated more WITH sending messages up to (and not including) $label.
And waits for follower (or user input).

• playfromlabel label : Executes the score from current position to position corresponding
to $label in accelerated more WITHOUT sending messages, then PLAYs (simulates) the
score from thereon.

• playtolabel label : PLAY (simulate) score from current position up to $label.

• gotolabel label : Position yourself on $label without doing anything else! (backward
compatibility)

PREPARING THE PERFORMANCE, REHEARSALS 65

NOTE: Most above commands would use “current position” and not “from the beginning”.
In order to reset, one would precede one of the above with the STOP method.

Methods with float/beat-position control

Same as above, but taking a float value corresponding to cumulative beat-position in score
(useful for interaction via notation editors such as AscoGraph and NoteAbility PRO). Namely:
startfrombeat, scrubtobeat, playfrombeat, playtobeat, and gotobeat

Non-standard use of score navigation command

Like the others commands understood by Antescofo, these navigation messages can be issued
from the Antescofo score itself. They can be used to develop open pieces, or to alter the flow
of the performance on purpose.

Tuning the Listening Machine

In the default audio observation mode, you need to define the analysis parameters which are
window size, and hop size in sample numbers. Antescofo automatically buffers audio and does
the required analysis. Your choice of window size and hopsize could alter the performance and
computation of the system! Default value is [2048 1024]. For example, when following piano
music, you might want to set window size to 4096 (for better spectral resolution). If you want
more exact timing, reduce the hopsize (and pay more CPU).

In your max/PD Patch, you can access to advanced performance controls through the audio
menu.

Calibration

The quality of audio input is of utmost importance for any recognition system and Antescofo
is no exception! If the audio input is too low or corrupted, Antescofo can no longer correctly
detect events.

Antescofo comes with a built-in Calibration mode to help make sure there is enough audio
level for the recognition system to work. You can use it by sending the “calibrate 1” message
to Antescofo, start sending audio to Antescofo (no need to “start”) and watch the values sent
from the left-most outlet with a prefix “calibration”.

Antescofo calibration values are always between 0.0 and 1.0 and can be interpreted as
follows: Whenever there are “events” present in audio, these values should be relatively high
(>0.75) and in the contrary (non-events such as silence, hall noise etc.) it should be relatively
low (<0.5). It is best practice to test these conditions before any use. If these conditions do
not meet, you have to tweak the input level (in Max or audio console) to Antescofo.

It is highly preferable in practice to separate live processing input from that of
Antescofo to keep separate level.

66 CHAPTER 5. ANTESCOFO WORKFLOW

Tuning

For pitch and polyphonic detection, Antescofo is tuned by default to 440.Hz (on A4). This
can be changed with the message tune $1, where $1 is the new tuning.

Harmonic Analysis Control

When run in polyphonic mode (default mode) Antescofo analyzes realtime audio and matches
it to score pitches using a predefined number of harmonics. This can be controlled using the
nofharm $1 message and is 10 by default. Use it if you are confident on what you’re doing !

Some instruments have strange harmonic structures ! For example, clarinet usually has
odd harmonics only. Or vibraphones (depending on the manufacturer) might produce only
several non-arranged harmonics. If such cases are systematic (and you can observe it clearly
on the instrument spectrum), you can tell Antescofo to systematically use a certain harmonic
series (which also accepts floating points) with the message harmlist. We recommend you
to be quite sure before changing this since it can severely affect behavior!

Dealing with Errors

Errors, either during parsing or during the execution of the Antescofo score, are signaled on
the MAX console.

The reporting of syntax errors includes a localization. This is generally a line and column
number in a file. If the error is raised during the expansion of a macro, the file given is the
name of the macro and the line and column refers to the begining of the macro definition.
Then the location of the call site of the macro is given.

Printing the Parsed File

Using Ascograph, one has a visual representation of the parsed Antescofo score along with the
textual representation.

The result of the parsing of an Antescofo file can be listed using the printfwd message
or the antescofo::printfwd internal command. This command opens a text editor.
Following the verbosity, the listing includes more or less information.

Tracing

They are several alternative features that make it possible to trace a running program.

The Outlet
If an outlet named TRACE is present, the trace of all event and action are send on this

outlet. The format of the trace is

EVENT label ...
ACTION label ...

PREPARING THE PERFORMANCE, REHEARSALS 67

Verbosity
The verbosity can be adjusted to trace the events and the action. A verbosity of n includes

all the messages triggered for a verbosity m < n. A verbosity of:

• 1: prints the parsed files on the shell console, if any.

• 3: trace the parsing on the shell console. Beware that usually MAX is not launched
from a shell console and the result, invisible, slowdown dramatically the parsing. At this
level, all events and actions are traced on the MAX console when they are recognized of
launched.

• 4: traces also all audio internals.

Tracing the Updates of a Variable
If one want to trace the updates of a variable $v, it is enough to add a corresponding

whenever at the begining of the scope that defines $v:

whenever ($v = $v)
{

print Update "$v: " $v
}

The condition may seems curious but is needed to avoid the case where the value of
::antescofo $v is interpreted as false (which will prohibit the triggering of the body).

Tracing the Evaluation of Functions
Function calls can be traced, see the description of the functions [@Tracing] and [@UnTrac-

ing].

68 CHAPTER 5. ANTESCOFO WORKFLOW

Chapter 6

Beyond score following. . .

Most people think Antescofo is exclusively used for mixed music and score following. That’s
partly true, but since the language exists and has been developed, Antescofo is also a great
tool for electronic music.

Antescofo as a sequencer

Speaking about time is very easy in Antescofo. AscoGraph and an Antescofo score can be seen
like a sequencer, where all the actions are organised in time (if you click on the Play button,
Antescofo becomes a sequencer) that you specify in the score.

You can write an electronic score with the beat notation and decide after to change the
tempo. In this case you don’t have to rewrite all the durations. Antescofo does the translation.
This allows you to change the tempo (with BPM) in any place in your score.

As we have shown before, you can also work with different times in a same moment with
the @tempo attribute and write complex polyrythms.

With macros you can greatly simplify your score to focus on the musical questions instead
of the technical realization.

Hierarchical scores

With the system of GROUP, you can write a hierarchical score where the different voices are
denoted by different groups. You can also create tracks (see @track_def) to filter any
kind of musical object or focus on a particular voice.

With the action view of AscoGraph you can easily see how the different voices of an
electronic polyphony interact with each other.

Open scores and installations

If you see the process and whenever constructions, you will see that these features can be
easily used for installations or for open scores. You can use Antescofo without a “classical
score”, without NOTES, CHORD. . . It means that you can program a reactive environment

69

70 CHAPTER 6. BEYOND SCORE FOLLOWING. . .

that “hears” sensors, audio descriptors. . .
If you compose open scores, you can take a look to the @jump keyword that is followed by

a comma separated list of simple identifiers referring to the label of an event in the score. This
attribute specifies that this event can be followed by several continuations: the next event in
the score, as well as the events listed by the @jump. So you can compose a non-linear score
with choice points leaved to the performer. You evn can modify during the execution the list
of allowed jumps, achieving a kind of “multi-graph” score.

Figure 6.1: Open score in “Tesla ou l’effet d’étrangeté”, Julia Blondeau

Beyond Max and Pure Data. . .

We have shown many uses of Antescofo in Max. However, with OSC, you can use Antescofo as
controller of any kind of software that supports OSC. For example, SuperCollider and CSound
are great Antescofo fellow players ! In the two next examples, Max is a kind of “pipe” between
Antescofo, CSound or SuperCollider, IRCAM’s Spat and audio descriptors. But Antescofo
sends also many messages via OSC without Max.

A SuperCollider example

The figure below shows an environment created by José-Miguel Fernandez for his pieces where
you can see 3 different softwares. In the background you can see the AscoGraph interface. At
the left front you can see Max using Antescofo and descriptors (who are sended to whenever
and process). At the right you can see a SuperCollider interface where processes are
generated “on the fly” and displayed on the screen. In this example, Antescofo manages all
the control parts and sends the parameters needed for synthesis and effects to SuperCollider.
Fernandez uses many chaotic funcions included in Antescofo and several of its data structures
(e.g., map and tab).

A CSound example

In the next example, Antescofo is used to send a score to CSound and to generate table for
CSound. Here, Antescofo can replace the “.sco” file for CSound or the “score part” of the “.csd”
in CSound. All the CSound synthesis is generated in real time and controled by the object
antescofo~.

The spatialization is controled by Antescofo too with many curves and process that
generate complex trajectory.

BEYOND MAX AND PURE DATA. . . 71

Figure 6.2: Utilisation of Antescofo with SuperCollider, works by José-Miguel Fernandez

Figure 6.3: Utilisation of Antescofo with CSound, works by Julia Blondeau

72 CHAPTER 6. BEYOND SCORE FOLLOWING. . .

OSC

Many people have been using Antescofo message passing strategies as defined above to interact
with processes living outside MAX/PD (such as CSound, SuperCollider, etc.). To make their
life easier, Antescofo comes with a built-in OSC host. The OSC protocol3 can be used to
interact with external processes using the UDP protocol. It can also be used to make two
Antescofo objects interact within the same patch. Unlike MAX or PD messages, OSC messages
can be sent and received at the level of the Antescofo program. The embedding of OSC in
Antescofo is done through 4 primitives.

oscsend name host : port msg_prefix

oscrecv name port msg_prefix $v1 . . . $vn

see the OSC message chapter for more details.

Be adventurous !

Figure 6.4: DonQ

“De toute manière, le compositeur, lors de ses voyages d’exploration, se voit à la fois comme
Christophe Colomb et Don Quichotte – il débarque sur une terre inconnue et/ou tombe de
cheval et atterrit de manière peu glorieuse, et à chaque fois en tout cas là où il ne pensait pas
aboutir ; c’est ainsi seulement qu’il fait l’expérience de lui-même, qu’il se transforme, qu’il
vient à lui-même.”

LACHENMANN, Ecrits et entretiens.
“In any case, the composer, during his exploratory journeys, is seen as both Columbus

and Don Quixote - he lands in an unknown territory and/or falls from his horse and lands

/Reference/atomic_osc/index.html

BE ADVENTUROUS ! 73

ungloriously, and each time in any case there where he did not think to reach; only in this
way he does experience himself, turn, comes to himself.”

LACHENMANN, Writings and interviews.
We have provided a brief overview of Antescofo, but a WORLD remains to be discovered. . .

and experimented with! In the Reference Manual, you can more precisely research the
previously addressed issues. You can decide to only take the examples given at the end of this
documentation (snippets, How-to. . .) and copy them in your own score. . . or you can decide
to roll up your sleeves and understand all the intricacies and secrets of Antescofo language to
try to be an “aware Antescofo electronic composer!” ;-)

If you continue the adventure, you will see how to create a complex process or how to
create a reactive environment where Antescofo can hear many things and react as you had
composed! You will see how to manipulate time in Antescofo and how to synchronize your
machine with a musician in real, musical way!

So. . . Try and fail, retry and be victorious, and don’t forget that your feedback is important
to us. Please, send your comments, questions, bug reports, use cases, hints, tips & wishes
using the IRCAM Forum discussion group at:

http://forumnet.ircam.fr/discussion-group/antescofo/?lang=en
Antescofo Reference Manual

/Reference/1-intro/index.html
http://forumnet.ircam.fr/discussion-group/antescofo/?lang=en

74 CHAPTER 6. BEYOND SCORE FOLLOWING. . .

Figure 6.5: Frontispice metronom

Chapter 7

Introduction

This document is intended as a reference manual for the Antescofo programming language. It
lists the language constructs, and gives their informal syntax and semantics through several
chapters gathered in eight parts:

Syntax and score structure

• Lexical elements describes the lexical notation in an Antescofo program.

• Program Structure discusses the organization of an augmented score and present the
interleaving of definition, events and actions.

Events

• Event Specification details the definition of musical events expected by the listening
machine.

Actions

Actions are the computations launched by the system in reaction to the recognition of musical
events or as the time passes. The introduction presents the notion of action sequence, actions’
attributes and delays that are available for any kind of action. Then, the two kinds of actions
are introduced:

• Atomic actions take no time to be performed;

• Compound actions represent durative activities.

Management of Time

The chapter A strongly Timed Language introduces the various notion of time at work in
Antescofo:

• the manufacturing of time elaborates the temporal notions that organize the computations
of actions;

75

/Reference/2-syntax/index.html
/Reference/structure_ref/index.html
/Reference/event_ref/index.html
/Reference/action_ref/index.html
/Reference/3-atomic/index.html
/Reference/4-compound/index.html
/Reference/5-synchro/index.html
/Reference/time_manufacturing/index.html

76 CHAPTER 7. INTRODUCTION

• the fabric of time elaborates on the relationships between the potential timing of musical
events expressed in the score and the actual time of the actions during the performance.

These two sections are followed by technical discussion of Antescofo temporal features:

• Action Priority explains the ordering of action that must be executed in teh same instant.

• Synchronization Strategies details the constraints that can be specified between the
actual timing of the performer and the timing of the electronic actions during the
performance.

• Error Strategies presents the management of error from the action perspective.

Expressions

Expressions are used to parameterize actions. They are build from values and variables,
conditional expression and functions.

Expressions are evaluated into values wich are either:

• Scalar values represent indecomposable values, or

• Data structures that provide several ways to organize the data to manage during a
performance.

Structure

The following chapters details the main mechanisms that can be used to capitalize a piece of
code and to re-use it:

• Functions
• Processes
• Macros
• Actors
• Temporal Patterns

Additional Features

Finally, several additional features that does not fit in the previous chapters are presented:

• Tracks
• Files layout of an Antescofo augmented score
• Evaluation at load time

Side-Notes

A few side-notes are used to present in detail some points of the Antescofo grammar and to
dig deeper in some technical subjects:

/Reference/time_fabric/index.html
/Reference/time_priority/index.html
/Reference/time_synchro/index.html
/Reference/time_error/index.html
/Reference/6-expression/index.html
/Reference/exp_variable/index.html
/Reference/exp_cond/index.html
/Reference/9-functions/index.html
/Reference/7-scalar/index.html
/Reference/8-data/index.html
/Reference/9-functions/index.html
/Reference/10-process/index.html
/Reference/11-macros/index.html
/Reference/actors/index.html
/Reference/patterns/index.html
/Reference/tracks/index.html
/Reference/file_structure/index.html
/Reference/eval_load/index.html

77

• Auto delimited expressions
• Simple expressions
• a comparaison between Macro, Function and Processus
• Argument evaluation strategies
• and the grammar of object definition

Other source of documentation

This Reference Manual is by no means a tutorial introduction to the language. A good working
knowledge of the Antescofo application is assumed:

• The reader may refer to the User Guide for a general presentation of the system.

• This manual is completed by a Functions Library that describes all predefined functions
in the Antescofo library.

• The Antescofo distribution comes with several tutorial patches for Max or PD as well as
the augmented score of actual pieces.

• The Antescofo Cookbook is a valuable source of code snippets and howto’s.

• And the ForumUser can be used to share information about Antescofo.

/Reference/auto_delimited/index.html
/Reference/6-expression/index.html#simple-expressions
/Reference/macro_function_process_comparison/index.html
/Reference/argument_passing_strategies/index.html
/Reference/large_obj_def/index.html
/Reference/1-intro/index.html
/UserGuide/intro/index.html
/Library/Functions/00intro/index.html
http://forumnet.ircam.fr/product/antescofo-en/index.html
https://cycling74.com/index.html
https://puredata.info/index.html
/Library/snipets/index.html
http://forumnet.ircam.fr/user-groups/antescofo/index.html

78 CHAPTER 7. INTRODUCTION

Figures/Antescofo_Reference_Manual.png

Chapter 8

Lexical Elements of an Antescofo
Score

Elements of the language can be categorised into six groups, corresponding to various con-
structions permitted in the language:

• Comments: Any text starting by a semi-colon ; or // is considered as comment and
ignored by parser until the end of line (inline comment).
Block (multi-line) C-Style comments starting with /* and ending with */ are allowed.

• Keywords: are reserved words introducing either Events or Action constructions.
Examples include Note (for events) and Group (for compound actions).

• Simple identifiers: denote Max or PD receivers. They are also used to specify the
label of a musical event or the label of an action.

• **−identifiers∗∗ : arewordsthatstartwith‘‘ character. They correspond to user-defined
variables or parameters in functions, processes, object or macro definitions.

• ::-identifiers: words starting with ::, obj::, pattern:: or track:: corresponding
respectively to processes, objects, patterns or tracks.

• @-identifiers: are words starting with a @. They eiher introduce a new definition or
denote predefined and user-defined functions, user-defined macros, or action or event
attributes.

User defined score elements like macros, processes, objects, tracks and functions can only
be used after their definition in the score. We suggest putting them at the beginning of the
file or to put them in a separate file using the @insert command. They will be discussed in
later chapters.

Case-Sensitive and case-Unsensitive Identifiers

Identifiers are sometimes case-sensitive and sometimes case unsensitive. The rule is simple:
reserved keyword or predefined identifiers are case unsensitive. User introduced identifiers and
predefined function names are case sensitive.

79

80 CHAPTER 8. LEXICAL ELEMENTS OF AN ANTESCOFO SCORE

Comments

Block comments are in the C-style and cannot be nested:

/* comment split
on several lines

*/

Line-comments are in the C-style and also in the Lisp style:

// comment until the end of the line
; comment until the end of the line

In this document, we use railroad diagrams to give a more precise description of the syntax.
The railroad diagram specifying comment’s syntax is:

{!BNF_DIAGRAMS/bnf_comment.html!}
Comments are ignored by the interpreter but not suppressed in normal processing. That is,

they act usually as separators, i.e.

$x/**/y

is read as two consecutive tokens $xand y. However, during macro-expansion comments
are suppressed (not ignored) in the textual expansion: in a macro-expansion, the previous
fragment is read as only one token $xy by the interpreter (see chapter Macros).

Indentation

Tabulations are handled like white spaces. Columns are not meaningful so you can indent
program as you wish. However, some constructs must end on the same line as their “head
identifier”: event specification, internal commands and external actions (like Max message or
OSC commands).

For example, the following fragment raises a parse error:

NOTE
C4 0.5
1.0s print

"message to print"

(because the pitch and the duration of the note does not appear on the same line as the
keyword NOTE and because the argument of print is not on the same line). But this one is
correct:

Note C4 0.5 myLab
Note C4 0.5 "some label with white space used to document the score"
1.0s
print "this is a Max message (to the print object)"
print "printed 1 seconds after the event Note C4..."

/Reference/11-macros/index.html

RESERVED KEYWORDS 81

Note that the first ‘print’ message is indented after the specification of its delay 1.0s but
ends on the same line as its “head identifier”, achieving one of the customary indentations
used for cue lists.

Splitting a line

A backslash before an end-of-line can be used to specify that the next line must be considered
as the continuation of the current line. It allows for instance to split the list of the arguments
of a message on several physical rows:

print "this two" "messages" "are equivalent"
print "this two" \

"messages" \
"are equivalent"

Reserved Keywords

Reserved keywords can be divided in two groups:

• Event Keywords including NOTE, CHORD, TRILL, BPM, etc., introduce musical
events (see chapter Events) and are used to describe the music score to be recognised.

• Action Keywords, such as GROUP, LOOP and more, specify computations that can
be instantaneous (Atomic actions) or containers for other actions that have a duration
(Compound actions).

The current list of reserved keywords is :

<div class="kr">
abort
action
and
at
</div>

<div class="kr">
before
bind
bpm
</div>

<div class="kr">
case

chord
closefile
curve
</div>

/UserGuide/events/index.html
/Reference/3-atomic/index.html
/Reference/4-compound/index.html

82 CHAPTER 8. LEXICAL ELEMENTS OF AN ANTESCOFO SCORE

<div class="kr">
do
during
</div>

<div class="kr">
else
event
expr
</div>

<div class="kr">
false
forall
</div>

<div class="kr">
gfwd
group
</div>

<div class="kr">
hook
</div>

<div class="kr">
if
imap
in
</div>

<div class="kr">
jump
</div>

<div class="kr">
kill
</div>

<div class="kr">
let
lfwd

loop
</div>

<div class="kr">
map
ms
multi
</div>

RESERVED KEYWORDS 83

<div class="kr">
napro_trace
note
</div>

<div class="kr">
of
off
on
openoutfile

oscoff
oscon
oscrecv

oscsend
</div>

<div class="kr">
parfor
patch
port
</div>

<div class="kr">
s
start
state
stop

switch
symb
</div>

<div class="kr">
tab
tempo
transpose
trill
true
</div>

<div class="kr">
until
</div>

<div class="kr">
value
variance
</div>

84 CHAPTER 8. LEXICAL ELEMENTS OF AN ANTESCOFO SCORE

<div class="kr">
whenever
where
while
with
</div>

Notice that event keywords always occur at the top-level of the text score. Reserved
keywords are case unsensitive, that is,

note NOTE Note NoTe notE

refers to the same identifier. However simple identifiers which are not reserved keywords
are case sensitive.

Simple Identifiers : Antescofo keywords and references to the
host environment

Simple identifiers are sequence of characters accepted by one of the three following regular
expressions and that are not reserved keywords:

[[:alpha:]_#'!~\xc3\xe2\x80-\xbf][[:alnum:]_#'/.?!+~><\-\Xc3\xe2\x80-\xbf]*

[0-9]+[[:alpha:]_'\xc3\xe2\x80-\xbf-]{2,}[[:alnum:]_#?'!~*/+.\-\xc3\xe2\x80-\xbf]*

[0-9]+[a-rA-Rt-zT-Z]+

[:alpha:] represents an alphabetic character, [:alnum:] represents an alphanumeric
character, i.e. [0-9a-zA-Z] and the hexadecimal range \xc3\xe2\x80-\xbf represents
a raisonable subset of UTF-8 accentuated characters and printable symbols.

These identifiers are much more general than the identifiers [:alpha:][:alnum:]*
usually recognized in programming language. For example they can start by a number or
include a relational operator like <, in order to represent the various Max or PD receivers
found in current patches (identifier starting with a number are common when working with
Max poly). It is however possible to encounter Max receivers that are not caught by the above
regular expressions. In this case, just use a string instead of a simple identifier, for the
receiver. For instance

"max receiver with white spaces" 1 2 3

refers to a receiver whose name includes white spaces.

$-identifiers : Variables

$-identifiers like $id, $id_1 are simple identifiers prefixed with a dollar sign. Only ! ? .
and _ are allowed as non-alphanumeric characters. $-identifiers are used to give a name to
variables and for function, process and macro definition arguments. They are case-sensitive.

You can learn more on expressions and variables in chapter Expressions.

/Reference/6-expression/index.html

::-IDENTIFIERS : PROCESSES 85

::-identifiers : Processes

::-identifiers like ::P or ::q1 are simple identifiers prefixed with two semicolons. ::-identifiers
are used to give a name to processus (see chapter Processes).

Other ::-identifiers have a prefix before the :: and are used to give a name to various
entities:

• obj:: identifies Objects

• track:: identifies Tracks

• pattern:: identifies Patterns]

@-identifiers : Functions, Macros, and Attributes

A word preceded immediately with a ‘@’ character is called a @-identifier. Only ! ? . and _
are allowed as non alphanumeric characters after the @.

They have four purposes in Antecofo language. Note that in the first three cases, @-identifiers
are case unsensitive, that is @tight, @TiGhT and @TIGHT are the same keyword.

Parsing directives

Some commands affect directly the parsing of a file:

• the @insert command is used to insert another file,

• the @insert_once command is used to insert another file if it has not been already
inserted;

• the command @uid generates on-the-fly a new (fresh) variable ($-identifier)

• the @lid command generate on-the-fly the las generated identifiers

Definitions

The following @-identifiers are used to introduce new definitions:

• @abort specifies an abort handler linked to a compound action,

• @broadcast introduces a broadcast method in an object definition,

• @fun_def defines a new function or a function-method attached to an object,

• @init introduces a new init section in an object definition,

• @obj_def specifies a new object definition,

• @pattern_def declares a new pattern to be used in a whenever

• @proc_def starts a process or process-method definition

/Reference/10-process/index.html
/yet-to-be-written.html
/Reference/tracks/index.html

86 CHAPTER 8. LEXICAL ELEMENTS OF AN ANTESCOFO SCORE

• @track_def declares a new track

• @whenever defines a reaction

• @macro_def is used to define new macros.

Events Attributes and Actions Attributes

Here is a list of the reserved @-identifiers used to specify an attribute of an action or an event.
These @-identifers are case unsensitive.

@abort @action @ante

@back @back_in @back_in_out @back_out @bounce
@bounce_in @bounce_in_out @bounce_out

@circ @circ_in @circ_in_out @circ_out @coef @command
@conservative @cubic @cubic_in @cubic_in_out @cubic_out

@date @dsp_channel @dsp_cvar @dsp_inlet @dsp_link
@dsp_outlet @dump

@elastic @elastic_in @elastic_in_out @elastic_out
@eval_when_load @exclusive @exp @exp_in @exp_in_out @exp_out

@fermata

@global @grain @guard

@hook @immediate

@inlet @is_undef

@jump

@kill

@label @latency @linear_in @linear_in_out @linear_out
@local @loose

@modulate

@name @norec

@pizz @plot @post @progressive

@quad @quad_in @quad_in_out @quad_out @quart @quart_in
@quart_in_out @quart_out @quint @quint_in @quint_in_out

@-IDENTIFIERS : FUNCTIONS, MACROS, AND ATTRIBUTES 87

@quint_out

@rdate @refractory @rplot

@sine @sine_in @sine_in_out @sine_out
@staccato @staticscope @sync

@target @tempo @tempovar @tight
@transpose @type

Naming Functions and Macros

@-identifiers are used to give a name to predefined functions, user-defined functions or user-
defined macros. These predefined or user-introduced @-identifiers are case sensitive.

{!Library/Functions/functions.list!}

88 CHAPTER 8. LEXICAL ELEMENTS OF AN ANTESCOFO SCORE

Chapter 9

Structure of an Antescofo Program

An Antescofo program, or augmented score, is a sequence of:

• macros, processes, functions, tracks, pattern and object definitions

• musical event specifications

• action specifications

written in a file. This file can include other files (inclusions can be nested arbitrarily) using
the [@insert](/Reference/file_structure/index.html) and [@insert_once](/Reference/file_structure/index.html)
commands, see section file structure. File inclusion does not alter the organization of an
augmented score: the interpreter sees one single flat file resulting from the textual inclusion of
all included files before any evaluation.

{!BNF_DIAGRAMS/augmented_score_1.html!}
Events are recognized by the listening machine (described in detail in chapter Event

Specification). Actions, outlined in chapter Actions and detailed in Atomic Actions and
Compound Actions, are computations triggered upon the occurrence of an event or of another
action. Actions can be dynamically parametrised by Expressions and data structures, evaluated
in real-time and described in detail in the sections Scalar Values and Data Structures.

Comments may appear anywhere and are simply ignored by the interpreter.

Definitions

Definitions may appear anywhere between events and actions. This is only for the programmer
convenience: they are handled when the score is loaded and their appearance do not alter the
sequence of events, the sequence of actions or the interleaving of events and actions. When the
sequencing of actions and events must be considered, definitions are simply abstracted away.

{!BNF_DIAGRAMS/definitions.html!}
There are nine kinds of entities that can be defined (see the above diagram). An entity

(function, process, etc.) must be defined before being used. So we suggest gathering all
definitions at the begining of the program, even if they can appear anywhere in the file. That
said, the position of a process definition in the file has an impact on its priority. See section
Action Priority.

89

/Reference/file_structure/index.html
/Reference/event_ref/index.html
/Reference/event_ref/index.html
/Reference/action_ref/index.html
/Reference/3-atomic/index.html
/Reference/4-compound/index.html
/Reference/6-expression/index.html
/Reference/7-scalar/index.html
/Reference/8-data/index.html
/Reference/time_priority/index.html

90 CHAPTER 9. STRUCTURE OF AN ANTESCOFO PROGRAM

When definitions are abstracted away, the structure of an augmented score is better viewed
as a first sequence of actions followed by reactions made of an event followed by a
sequence of actions :

{!BNF_DIAGRAMS/augmented_score.html!}

The First Sequence of Actions

Abstracting the definitions away, an augmented score starts by an optional sequence of actions.
Actions in this section are evaluated at the begining of the performance, as soon as the program
is launched with a start or a play command and before the recognition of the first musical
event.

An augmented score can consists of only this first sequence of actions. In this case, there
is no musical event to recognize at all, and the actions correspond to a synchronous and
temporized program (like a sophisticated cue list). This program is launched by the command
start or play, may wait the elapsing of delays and can react to changes in the external
environments through

• OSC messages,

• Whenever watching variables set by the environement using the setvar command

• commands send through the Max/PD interface to the Antescofo object.

Reactions: Events Triggering a Sequence of Actions

A reaction is the specification of a musical event followed optionally by a sequence of actions.
This sequence of actions is triggered by the recognition of the musical evant in the input
stream (audio or midi).

Some elements categorized here as events do not act as true musical event to recognize
in the input stream but as modifiers that affect the state of the listening machine for the
recognition of the following ‘real’ musical events:

• BPM

• variance

• tempo

• transpose

• rubato (experimental)

• napro_trace (deprecated)

See also the section Elements in the user guide.
These elements can be abstracted away when considering the sequence of actions linked to

an event.
Events are further described in the chapter Event Specification. Actions are further

described in the chapter Actions Specification.

/Reference/atomic_osc/index.html
/Reference/compound_whenever/index.html
/Reference/atomic_command/index.html
/Reference/atomic_messages/index.html
/Reference/event_ref/index.html
/Reference/action_ref/index.html

THE SEQUENCE OF REACTIONS 91

The Sequence of Reactions

Reactions appear in an augmented score in a sequence. The order in this sequence is fixed by
the order of textual apparition in the file.

The score followed by the listening machine corresponds to the sequence of musical events
extracted from the sequence of reactions. However, the [@jump] attribute can be used on
musical events to evade the strict linear ordering of events and to specify arbitrary graph
between events. In this graph a branching between events corresponds to an open score given
the choice between several possible futures. See section open scores.

An Example

Consider the following score (excerpt of an actual piece):

BPM 65

// some definition
@proc_def ::CS_solo_points($x, $y, $z, $u, $v) { /* ... */ }

@global $tSolo, $tabFreq

let $tSolo := 65
let $tabFreq := [/* ... */]

// start of score
NOTE D1 1/8
NOTE C2 1/8
NOTE Db2 1/8
NOTE Ab1 1/8
NOTE A2 1/2

Curve tSolo @grain := 0.05s
{ $tSolo

{ { $RT_TEMPO } @type "exp"
1/2 { ($RT_TEMPO+30) } @type "cubic_out"
2/4 { ($RT_TEMPO-20) }

}
}

BPM 68
GROUP Solo @tempo := $tSolo
{

::CS_solo_points("i3",1/2,0.08,0.5,81)
1/8 ::CS_solo_points("i1",1/2,0.09,0.5,91)

}

NOTE 0 5/2
NOTE G1 0
NOTE B1 0
NOTE D2 0

/Reference/event_ref/index.html#open-score-and-dynamic-jumps

92 CHAPTER 9. STRUCTURE OF AN ANTESCOFO PROGRAM

NOTE C1 1/2
NOTE 0 1/2
NOTE C1 1/2
NOTE G2 1

@fun_def @midi2hz($x) {$diapason * @exp(($x-69.0) * @log(2.0)/12)}

GROUP Solo2
{

ASCOtoCS_SYNTH4 c (@midi2hz($tabFreq[0]))
ASCOtoCS_SYNTH4 c (@midi2hz($tabFreq[2]))
ASCOtoCS_SYNTH4 c (@midi2hz($tabFreq[4]))

}

NOTE 0 1/2
NOTE G1 0
NOTE B1 0
NOTE D2 0

With respect to the structure of the performance, the definition of process ::CS_solo_points
and of function @midi2hz can be abstracted away. The definitions are mandatory but they
are processed when the file is loaded, not during the performance.

The [@global] clause is also a definition introducing global variables. Global variables are
implicitly defined, so here this definition is used only for documentation purposes, to outline
that two global variables will be used in this score.

The two BPM specifications are not real sonic events: they alter the recognition of the
following musical events.

When we abstract these definitions and event modifiers away, the resulting score is:

let $tSolo := 65
let $tabFreq := [/* ... */]

NOTE D1 1/8
NOTE C2 1/8
NOTE Db2 1/8
NOTE Ab1 1/8
NOTE A2 1/2

Curve tSolo @grain := 0.05s
{ $tSolo

{ { $RT_TEMPO } @type "exp"
1/2 { ($RT_TEMPO+30) } @type "cubic_out"
2/4 { ($RT_TEMPO-20) }

}
}
GROUP Solo @tempo := $tSolo
{

::CS_solo_points("i3",1/2,0.08,0.5,81)
1/8 ::CS_solo_points("i1",1/2,0.09,0.5,91)

AN EXAMPLE 93

}

NOTE 0 5/2
NOTE G1 0
NOTE B1 0
NOTE D2 0
NOTE C1 1/2
NOTE 0 1/2
NOTE C1 1/2
NOTE G2 1

GROUP Solo2
{

ASCOtoCS_SYNTH4 c (@midi2hz($tabFreq[0]))
ASCOtoCS_SYNTH4 c (@midi2hz($tabFreq[2]))
ASCOtoCS_SYNTH4 c (@midi2hz($tabFreq[4]))

}

NOTE 0 1/2
NOTE G1 0
NOTE B1 0
NOTE D2 0

which is composed of a first sequence of actions

let $tSolo := 65
let $tabFreq := [/* ... */]

followed by 17 reactions. These reactions corresponds to the following sequence of musical
events looked in the audio stream by the listening machine

NOTE D1 1/8
NOTE C2 1/8
NOTE Db2 1/8
NOTE Ab1 1/8
NOTE A2 1/2
NOTE 0 5/2
NOTE G1 0
NOTE B1 0
NOTE D2 0
NOTE C1 1/2
NOTE 0 1/2
NOTE C1 1/2
NOTE G2 1
NOTE 0 1/2
NOTE G1 0
NOTE B1 0
NOTE D2 0

Only two reactions have actions associated to it: NOTE A2 1/2 and NOTE G2. A sequence
of two actions (the curve tSolo and the group Solo) is associated to NOTE A2 1/2. Only

94 CHAPTER 9. STRUCTURE OF AN ANTESCOFO PROGRAM

one action, the group Solo2 is associated to NOTE G2 1. The groups are compound actions
that gather together several others actions. Here they call processes or send MAX/PD
messages.

Chapter 10

Event Specification

Figure 10.1: First measures of Nachtleben, Julia Blondeau, 2014.

First measures of Nachtleben, Julia Blondeau, 2014.
Events are detected by the listening machine in the audio stream. The specification of an

event starts by a keyword defining the kind of event expected and some additional parameters.
There are two basic event (NOTE and EVENT) and three event containers (CHORD, TRILL)
and MULTI).

Here we give the general syntax of an event specification and then we details all its
components.

95

96 CHAPTER 10. EVENT SPECIFICATION

Musical Event Specification

{!BNF_DIAGRAMS/event.html!}
Event definitions must end by a carriage return. In other words, you are allowed to define

only one musical event per line.
TRILL and MULTI are examples of compound events organizing a set of NOTEs in time.

Thus they can accept one or several pitch_lists.
There is an additional kind of event

EVENT d

also followed by a mandatory duration d, which correspond to a fake event triggered
manually by the “nextevent” button on the graphical interface or bythe message ‘nextevent’
sent to the antescofo object.

We first detail the specification of a pitch, then the notation of a duration. We detail the
various kinds of events before the presentation of the optional event’s attributes. The last
section of this chapter is devoted to the command that alters the sequencing of the score.

Pitch Specification

{!BNF_DIAGRAMS/pitch_spec.html!}
A pitch (used in NOTE) can take the following forms:

• MIDI number (e.g. 69 and 70, 0 is silence),

• MIDI cent number (e.g. 6900 and 7000),

• Standard Pitch Name (e.g. A4 and A#4).

• For microtonal notations, one can use either MIDI cent (e.g. 6900) or Pitch Name
standard and MIDI cent alteration using ’+’ or ’-’ (e.g. NOTE A4+50 and NOTE A#4+50
or NOTE B4-50).

A minus sign - may precede the previous specification to specify that the current note is a
continuation of a note with the same pitch in the preceding event:

CHORD (C4 D5) 1
CHORD (-C4 D3) 1/2

A pitch list is a sequence of one or more pitches (without separator). They are used for
instance to define content of a CHORD. For example, the following line defines a C-Major chord
composed of C4, E4 and G4:

CHORD (C4 64 6700)

DURATION SPECIFICATION 97

Duration specification

{!BNF_DIAGRAMS/duration_spec.html!}
Duration is a mandatory specification for all events. The of duration an event is specified

in beats either by an integer (1), the ratio of two integers (like 4/3) or a float (like 1.5).

Events as Containers

Each event keyword in Antescofo can be seen as containers with specific behavior and given
nominal durations. A NOTE is a container of one pitch. A CHORD contains a vector of pitches.
The figure below shows an example including simple notes and chords written in Antescofo:

Figure 10.2: chord notation

BPM 60
NOTE C4 1.0
CHORD (D4 F4) 1.0
NOTE 0 1.0 ; a silence
NOTE G4 0.0 ; a grace note with duration zero
NOTE F4 2.0

TRILL

Similar to trills in classical music, a TRILL is a container of events either as atomic pitches or
chords, where the internal elements can happen in any specific order. Additionally, internal
events in a TRILL are not obliged to happen in the environment. This way, TRILL can be
additionally used to notate improvisation boxes where musicians are free to choose elements.
A TRILL is considered as a global event with a nominal relative duration. Figure below shows
basic examples for Trill.

TRILL (A4 B4) 1.0
NOTE 0 1.0 ; a silence
TRILL ((C5 E5) (D5 F5)) 2.0

The figure below shows a typical polyphonic situation on piano where the right-hand is
playing a regular trill, and the left hand regular notes and chords. In this case, the score is to
be segmented at each event onset as TRILL whose elements would become the trill element
plus the static notes or chords in the left-hand.

98 CHAPTER 10. EVENT SPECIFICATION

Figure 10.3: trill notation

Figure 10.4: trill notation

EVENT ATTRIBUTES 99

TRILL ((A4 A2) (B4 A2)) 1/2
TRILL ((A4 D3) (B4 D3)) 1/2
TRILL ((A4 C3 E3) (B4 C3 E3)) 1/2
TRILL ((A4 D3) (B4 D3)) 1/2
TRILL (A4 B4) 2.0

MULTI

{!BNF_DIAGRAMS/multi_spec.html!}
Similar to TRILL, a MULTI is a compound event (that can contain notes, chords or trills

events) but where the order of actions are to be respected and decoded accordingly in the
listening machine. They can model continuous events such as glissando.

A chord event inside a multi is specified through its pitch list between parenthesis.
To specify a trill event in a multi, it suffices to insert a ' character after the pitch list

specifying the trill (between parenthesis). The figure below shows an example of glissandi
between chords written by MULTI.

Figure 10.5: gliss notation

MULTI ((F4 C5) -> (D4 A4)) 4.0

Event Attributes

{!BNF_DIAGRAMS/event_attributes.html!}
The attributes of a musical event are either a label or a @-keyword following the definition

of the event. Attributes are optional.

Event Label

A simple identifier or a string or an integer acts as a label for this event. There can be several
such labels. If the label is a simple identifier, its $-form can be used in a expression elsewhere
in the score to denote the time in beats of the onset of the event.

Label: Optionally, users can define labels on events as a simple identifier, a number or a
string, useful for browsing inside the score and for visualisation purposes.

For example, measure1 is an accepted label. If you intend to use white space or mathemat-
ical symbols inside your string, you should surround them with quotations such as "measure
1" or "measure-1"

100 CHAPTER 10. EVENT SPECIFICATION

Fermata, Pizzicato, Hook and Jump

There are four kinds of event attributes besides labels:

• The keyword @fermata specifies that this event has a fermata signature. A Fermata
event can last longer and arriving and leaving it does not contribute to the tempo
decoding of the performance.

• The keyword @pizz specifies the event is a string pizzicato. This usually helps Score
Follower stability.

• The keyword @hook specifies that this event cannot be missed (the listening machine
need to wait the occurrence of this event and cannot presume that it can be missed).

• The keyword @jump is followed by a variable or by a comma separated list of simple
identifiers referring to the label of an event in the score. This attribute specifies that
this event can be followed by several continuations: the next event in the score, as well
as the events listed by the @jump. See below.

These attribute can be given in any order. For instance:

Note D4 1 here @fermata @jump l1, l2

defines an event labelled by here which is potentially followed by the next event (in the
file) or the events labeled by l1 or l2 in the score. It has a fermata. Note that

Note D4 1 @jump l1, l2 here

corresponds to the same specification: here is not interpreted as the argument of the jump
but as a label for the event because there is no comma after l2.

Open Score and Dynamic jumps

Open Score: specifying alternative follow-ups

Usually, musical events are matched in sequence: after an event e, the listening machine looks
to match the event that is specified textually after e in the score. So, the score is deterministic:
the expected future of each musical event is well defined1.

The [@jump] attribute of an event is used to specify alternative “continuations” as a list
of labels specifying the events that can be expected after e. This feature makes possible to
escape the standard linearity of a score to specify open score where the musician may choose
between several alternatives to proceed. The resulting score is not deterministic: after an
event with a [@jump] attribute, one of the events listed in the jump list can be expected.

Obviously, the listening machine must be able to disambiguate the possible follow-ups: so,
the first events of each continuation must be different.

Here is an example corresponding to the following open score organization:
{!BNF_DIAGRAMS/open_score.html!}

1Even if the specified score is deterministic, the performance is not: musical events can be missed and the
temporal relationships of the score are subject to the interpretation of the performer.

OPEN SCORE AND DYNAMIC JUMPS 101

// INTRO
NOTE G3 1 INTRO
; ...
NOTE G4 1 @jump part2, part2_alt

// PART2
NOTE D2 1 part2
; ...
NOTE D3 1 end_part2 @jump next_part

// PART2 ALT
NOTE E3 1 part2_alt
; ...
NOTE E5 1 end_part2_alt

// NEXT_PART
; NOTE E5 next_part
; ...

Dynamic Jumps

Instead of a fixed list of labels, it is possible to use an Antescofo variable. This variable must
refer to an event position (integer or float) or an event label (through a string) or a tab of
them. This variable may change its value in the course of the performance. In this way, it
is possible to achieve “dynamic open score” where the graph of the possibilities is updated
during the performance, e.g. following the choices made by the musician, external events,
internal computations, etc.

Dynamic changes in the score graph (through the variables appearing in the [@jump]
attribute) impact the listening machine. The listening machine maintains a set of hypothesis
about the potential events to recognize in the audio stream. If the changes in the score
graph are anticipated enough with respect to the actual jumps, the listening machine will
automatically accommodate these changes.

However, if the computation of the jumps are not far enough in time from the actual jumps,
the listening machine must be explicitly warned to allow the revision of the hypothesis. This
is done by setting true to the system variable $JUMP_UPDATED when the modifications
are done. It is not easy to define what it means “far enough” because the temporal horizon
used by the listening machine is adaptive.

Here is a toy example: the idea is to start with an INTRO sequence and then to finish with
a NEXT_PART sequence, and in between playing at most once PART2 or PART3 followed by
INTRO, in any order:

$jumps := ["begin_part2", "begin_part3", "next_part"]
$part2_done := false
$part3_done := false

// INTRO
NOTE G3 1 INTRO
; ...

102 CHAPTER 10. EVENT SPECIFICATION

NOTE G4 1 @jump $jumps

// PART2
NOTE D2 1 begin_part_2

$part2_done := true
; ...
NOTE D3 1 end_part_2 @jump INTRO

$jumps := if ($part3_done) { "next_part" }
else { ["begin_part3", "next_part"] }

$JUMP_UPDATED := true

// PART3
NOTE E3 1 begin_part_3

$part3_done := true
; ...
NOTE E5 1 end_part_3 @jump INTRO

$jumps := if ($part2_done) { "next_part" }
else { ["begin_part2", "next_part"] }

$JUMP_UPDATED := true

// NEXT_PART
; ...

In this example, the musician may choose to perform one of the following five scenarios:

INTRO --> NEXT_PART
INTRO --> PART2 --> INTRO --> NEXT_PART
INTRO --> PART2 --> INTRO --> PART3 --> INTRO --> NEXT_PART
INTRO --> PART3 --> INTRO --> NEXT_PART
INTRO --> PART3 --> INTRO --> PART2 --> INTRO --> NEXT_PART

Score statement

An Antescofo text score is interpreted from top to bottom. Score statements will affect lines
that follow its appearance.

{!BNF_DIAGRAMS/score_statement.html!}
The @modulate attribute can be used on a BPM specification, not on an event. It specify

that the tempo must be modulated to the pro rata of the actual tempo of the performer. For
example, if a BPM 60 is specified in the score, and the actual tempo of the performance if
70, then an indication of BPM 80 @modulate reset the tempo expected by the listening
machine to 80× 70

60 ' 93.3.
The variance statement is used to alter the variance parameter of the listening machine.

A variance is associated to each musical event. The statement change the variance of the next
events for the specified quantity. Use at your own risk.

The tempo statement is used disable or to enable the tempo inference.When the tempo
inference is disabled, the nominal tempo specified in the score (through BPM statment, are
used.

SCORE STATEMENT 103

The dummysilence statement is used to insert a special “ghost event” is inserted between
two musical events. This can improve in some contexts, the behavior of the listening machine
(and degrade this behavior in other contexts).

The pizzsection statement can be used to define a sequence of musical events (between
pizzsection on and pizzsection off) that have the @pizz attribute by default.

The @transpose statement is used to define a transpose factor used for all subsequent
pitch definition.

The rubato statement is reserved for future specification.

104 CHAPTER 10. EVENT SPECIFICATION

Chapter 11

Actions Specifications

Figure 11.1: altered picture of a Tinguely machine

Actions are comanmds and computations performed by Antescofo at a certain point in
time. Often, theses actions are messages sent to a MAX/PD object to trigger other activities.
Other actions correspond to internal computations. Actions can be also used to specify the
temporal organization of subsequent actions.

Actions can be categorized as instantaneous or durative:

• an instantaneous action takes no time to be performed (see the Synchrony hypothesis);

• a durative action is an action that takes times to be performed.

105

/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages

106 CHAPTER 11. ACTIONS SPECIFICATIONS

However, another relevant categorization is atomic or compound:

• An atomic action performs an elementary computation or a simple message passing
that cannot be decomposed.

• A compound action groups other “child actions” allowing for polyphony (i.e. actions
that are interleaved in time or that are are performed in parallel), loops (i.e. actions
that are iterated and repeated in time), conditional actions, etc.

An atomic action is always instantaneous. Usually, a compound action takes time to
be performed. Howevever, some compound actions may be instantaneous (for example, a
conditional action that involves only one atomic action without delay.

Action Sequence

Actions always appear in sequences called groups. A group organizes the performance of
its actions in time. Some groups are explicit when they are introduced with the Group
construction (the fundamental compound action). Or they can be implicit:

• as the sequence of actions that appears after a musical event,

• as the children of other compound actions: Loop, Whenever, etc.,

• as the body of a process,

• as the [@action] clause of a Curve,

• as an [@abort] clause of a compound action,

• as an [@init] clause, a [@whenever] clause or as the body of a method in an object.

An action in an sequence of actions:

• starts with an optional delay

• is linked with the previous action through a continuation operator. They are currently
three continuation operators:

– ‘ ‘ (nothing, the two actions appears in sequence in the text) which specifies that
the action that follows starts with the begining of the previous one;

– ==> which triggers the next action with the end of the previous one;
– and +=> which launches the next action at the end of the previous one including

its children.

In addition, actions have optional attributes that are specified differently depending on
whether the action is atomic or compound.

/Reference/compound_group/index.html
/Reference/compound_loop/index.html
/Reference/compound_whenever/index.html
/Reference/compound_curve/index.html
/Reference/action_ref/index.html#delays
/Reference/compound_continuation/index.html

A GLIMPSE OF SYNTAX 107

A Glimpse of Syntax

Actions Sequence

Sequence of actions appear after a musical event or as the body of a compound action. They
are made explicit with the notion of Group which is used to specify additional properties of
the sequence (e.g. synchronization attributes).

{!BNF_DIAGRAMS/general_actions.html!}
The [@local], [@global] and [@tempovar] keywords introduce variables declaration. The

local variables are local to the sequence of actions.

Atomic Action

These actions are further described in chapter Atomic Actions. They are performed instanta-
neously.

{!BNF_DIAGRAMS/atomic_actions.html!}

Compound Action

These actions are further described in chapter Compound Actions. They act as temporal
containers organizing the temporal relationships of other actions.

{!BNF_DIAGRAMS/compound_actions.html!}

Action Attributes

Each action has some optional attributes which appear as a comma separated list:

Group G @att\ensuremath{_1}, @att\ensuremath{_2} := value { }
atomic_action @att\ensuremath{_1}, @att\ensuremath{_2} := value
compound_action @att\ensuremath{_1}, @att\ensuremath{_2} := value { ... }

In this example, @att1 is an attribute limited to one keyword, and @att2 is an attribute
that requires a parameter. The parameter is given after the optional := sign.

Some attributes are specific to some kind of actions. There are listed below and they are
described in the section dedicated to this kind of action:

• [@norec] is relevant only for the abort atomic action,

• [@action] and [@grain] are meaningful only for the Curve construct,

• [@abort] and [@exclusive] have an impact on all compound actions,

• [@immediate] is relevant only for Whenever,

• @staticscope is a qualifier for process definition,

• synchronization attributes may alter all actions, incuding atomic ones (even if a [@tempo]
specification on an atomic action is meaningless).

/Reference/compound_group/index.html
/Reference/exp_variable/index.html#variables-declaration
/Reference/3-atomic/index.html
/Reference/4-compound/index.html
/Reference/atomic_termination/index.html
/Reference/compound_curve/index.html
/Reference/compound_whenever/index.html

108 CHAPTER 11. ACTIONS SPECIFICATIONS

Curve Related Attributes {!BNF_DIAGRAMS/curve_attributes.html!}
Whenever Related Attributes {!BNF_DIAGRAMS/whenever_attributes.html!}
Process Definition Related Attributes {!BNF_DIAGRAMS/process_attributes.html!}
Abort Related Attributes {!BNF_DIAGRAMS/abort_attributes.html!}
Compound Actions Related Attributes {!BNF_DIAGRAMS/group_attributes.html!}
Synchronization Related Attributes {!BNF_DIAGRAMS/synchro_attributes.html!}

Labels

There is one additional attribute that can be specified for all actions: a label. The label of a
compound action usally follows the keyword introducing the compound action, like the label G
for the group in the example above. The label can also be specified with the ::antescofo
@label attribute:

action ... @label := a_label
action ... @label := "a label"

(this is the only way to give a label to an atomic action or to an if or a switch).
Labels are used to refer to an action, for instance to terminate it. Like events, actions can

be labeled with:

• a simple identifier,

• a string,

• an integer.

There can be several labels for the same action. Unlike with event labels, the $-identifier
associated to the label of an action cannot be used to refer to the relative position of this
action in the score.

Delays

{!BNF_DIAGRAMS/delay.html!}
An optional specification of a delay can be given before any action A. This defines the

amount of time between the previous event or action in the score and the computation of A.
It can be expressed in seconds, milliseconds, or beats.

The delay countdown will begin to run from either the beginning or the end of the previous
action, in accordance with to the continuation operator that precedes it. If the action is
triggered by an event, the delay countdown must begin upon recognition of said event. See the
section Continuation Operator for more information. For the rest of this section we suppose a
default continuation: the delays are counted down from the beginning of the previous action.

Upon the expiration of the delay, we say that the action is fired (we use also the word
triggered or launched). Thus, the following sequence

/Reference/compound_continuation/index.html

DELAYS 109

NOTE C2 2.0
d\ensuremath{_1} action\ensuremath{_1}
d\ensuremath{_2} action\ensuremath{_2}

NOTE D2 1.0

specifies that, in an ideal performance that adheres strictly to the temporal constraint
specified in the score, action1 will be fired d1 after the recognition of the C2 note, and
action2 will be triggered d2 after the firing of action1. That is to say, action2 is fired
d1 + d2 after the recognition of C2.

A delay can be any expression. This expression is evaluated when the preceding event
is launched. That is, expression d2 is evaluated in the logical instant where action1 is
computed. If the result is not a number, an error is signaled.

Zero Delay

The absence of a delay is equivalent to a zero delay. A zero-delayed action is launched
synchronously with the preceding action or with the recognition of its associated event.
Synchronous actions are performed in the same logical instant and last zero time, cf. para-
graph Logical Instant.

Absolute and Relative Delay

A delay can be either absolute or relative. An absolute delay is expressed in seconds (or in
milliseconds) and refers to wall clock time or physical time. The qualifier (s or ms, respectively)
is used to denote an absolute delay:

a\ensuremath{_0}
1 s a\ensuremath{_1}

(2*$v) ms a\ensuremath{_2}

Action a1 occurs one second after a0 and a2 occurs (2 * $v) milliseconds after a1. If the
qualifier (s or ms) is missing, the delay is expressed in beat and it is relative to the tempo of
the enclosing group.

Evaluation of a Delay

In the previous example, the delay for a2 implies a computation whose result may depend of
the date of the computation (for instance, the variable $v may be updated somewhere else in
parallel). So, it is important to know when the computation of a delay occurs: it takes place
when the previous action is launched, since the launching of this action is also the start of the
delay. And the delay of the first action in a group is computed when the group is launched.

A second remark is that, once computed, the delay itself is not reevaluated until its
expiration. However, the delay can be expressed in the relative tempo or relatively to a
computed tempo and its mapping into the physical time is reevaluated as needed - that is,
when the tempo changes.

/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages

110 CHAPTER 11. ACTIONS SPECIFICATIONS

Delay vs. Expressions. The expression used in the specification of a delay, and more
generally of a duration1, must evaluate to a numeric (integer or float). There no specific type
of value corresponding to a delay.

This means that 1 s is not a value. The s or ms qualifier appears in the specification of a
delay, but is not part of the expression defining the duration of the delay. A consequence is
that you cannot pass 1 s as the value of an argument (however, you can pass 1).

Synchronization Strategies

Delays can be seen as temporal relationships between actions. There are several ways, called
synchronization strategies, to implement these temporal relationships at runtime.

For instance, assuming that in the first example of this section action2 actually occurs
after the occurrence of NOTE D, one may count a delay of d1 + d2 − 2.0 starting from NOTE
D after launching action2. This approach will be for instance more tightly coupled with the
stream of musical events. Synchronization strategies are discussed in chapter Synchronization
Strategies.

When an Action is Performed

We write at the beginning of this chapter that actions are performed when arriving at some
date. But the specification of this date can take several forms. It can be

• the occurrence of a musical event (detected by the listening machine)

• the change of a musical parameter (i.e., the tempo)

• the start or the end of another action

• the expiration of a delay

• the reception of an OSC message

• a logical event (see the whenever construction and the chapter Patterns) triggered by an
internal update (via :=) or an external update (via setvar) of a variable

• the reception of a message from the host environment (Max, PD)

• the loading of the score (cf. [@eval_when_load])

• the signal spanned by an abort action (see [@abort] handlers)

• the sampling of a Curve

• the instance of an iterative construct Loop and Forall

• the launch of a process (cf. Processes) or the creation of an object (cf. Objects)

In addition, for delays and for durative actions, the passing of time depends on a temporal
scope which defines a tempo, a synchronization strategy and other temporal parameters.
These notions are investigated in chapter Synchronization.

1used for the period of a Loop and in the breakpoint of a Curve

/Reference/time_synchro/index.html
/Reference/time_synchro/index.html
/Reference/atomic_osc/index.html
/Reference/compound_whenever/index.html
/Reference/patterns/index.html
/Reference/atomic_messages/index.html
/Reference/atomic_termination/index.html
/Reference/compound_curve/index.html
/Reference/compound_loop/index.html
/Reference/compound_forall/index.html
/Reference/10-process/index.html
/yet-to-be-written.html
/Reference/time_synchro/index.html
/Reference/compound_loop/index.html
/Reference/compound_curve/index.html

Chapter 12

Atomic Actions

Actions are divided into Atomic Actions which are performed instantaneously and cannot
be decomposed and actions that gather others actions and that usually take time (described
in next chapter Compound Actions).

In this chapter, we focus on atomic actions that is, actions that take no time to be per-
formed. Instantaneity is an idealization of the actual computation, see chapter Synchronization
for more detailed explanation on this abstraction.

An atomic action corresponds to

• an interaction with the environment through: message passing to MAX/PD receivers,
OSC messages, or file writing,

• an assignment,

• the termination of another action,

• an internal command,

• the launching of a processus or the creation of an object,

• checking an assertion.

{!BNF_DIAGRAMS/atomic_actions.html!}
(Clicking on a box gives direct access to the corresponding documentation.)

Message passing to Max/PD

The simplest form of action in Antescofo is sending some values to a receive object in MAX or
PD. This way, Antescofo acts as a coordinator between multiple tasks (machine listening and
actions themselves) attempting to deliver actions deterministically as they have been authored
despite changes from musicians or controllers. These actions are simply equivalent to message
boxes and their usage is similar to cue list object in MAX/PD with the extension of the notion
of Delay. They take the familiar form of:

<optional-delay> <receiver-name> <message-content>

111

/Reference/action_ref/index.html
/Reference/3-atomic/index.html
/Reference/4-compound/index.html
/Reference/time_synchro/index.html

112 CHAPTER 12. ATOMIC ACTIONS

Since such actions are destined for interaction with external processes (in MAX/PD), we
refer to them as external actions. External actions includes also sending an OSC message or
writin data in some file, see below.

Message Receiver

A MAX/PD message starts by an optional delay followed by a symbol refering to a MAX
or PD receiver. This identifier must be a simple identifier (that is, it cannot be a [reserved
#-identifier] and must not be a reserved keywords) refering to receiver object in MAX/PD.

Alternatively, it is always possible to use an arbitrary string: the content of the string
denotes the Max receiver.

For example, the following action attempts to send its message to a receiver called “print”
in MAX/PD whose patch might look like the figure on its left:

<td>
<div>
![simple print patch](Figures/SimplePrintPatch.png)
</div>
</td>
<td>

NOTE C4 1.0
print I will be printed upon recognition of C4
0.5 print "I will be printed next, after 0.5 beats"
print Comma, separated, message, as in MAX

</td>

Message arguments

What follows a receiver is a comma-separated sequence of argument list. An argument list is
simply a sequence of closed-expressions, simple identifiers and @-identifiers. Antescofo follows
the Max convention: a message to the receivers is sent for each argument list, that is

print 1 2 3, 4 5 6, 7 8 9

is equivalent to the 3 messages

print 1 2 3
print 4 5 6
print 7 8 9

Message terminator

The specification of a message ends with a carriage-return (the end of the line) or a closing
brace. This is important because the arguments of a message is a list of items, without
separators, so a terminator is needed.

/Reference/2-syntax/index.html#reserved-keywords

MESSAGE PASSING TO MAX/PD 113

Writing a message with a lot of arguments on one line can be cumbersome. So a message
can span several lines, but the intermediate lines must end with a backslash \ which voids the
following end of line.

For instance,

$a := 1 ; This is an assignment! see below in this chapter
print "the value of the variable a is " $a
print and here is \

a (2 * $a) "nd message " \
"specified on 3 lines (note the \\)"

will print

the value of the variable a is 1
and here is a 2nd message specified on 3 lines (note the \)

In the second message of the previous example, there are 7 arguments: the first four are
simple identifiers converted into the corresponding symbols, the fifth argument is evaluated
into an integer and the last is a string. The backslash character has a special meaning and
must be “backslashed” to appear in the string, see section String.

Expressions in messages’ arguments

Expressions are evaluated to give the arguments of the message. To avoid ambiguities, an
expression in a message must be a closed expression, that is: a simple identifier, a scalar
constant or an expression between parentheses.

In the previous example, the first print has two arguments: a string and a variable which
evaluates to 1. Each value is converted into the appropriate MAX/PD values when the
message is sent:

• a simple identifier is converted into a Max/PD symbol,

• a string is converted into a MAX/PD symbol

• an integer is converted into a long

• a float is converted into a float

• a boolean is converted into a long

• a tab of size n is converted into n arguments, one for each tab element

• other Antescofo values (e.g. map or nim or functions, processes, etc.) are converted into
their string representation before being sent to Max/PD.

When a string is converted into a MAX/PD string, the delimiters (the quotation marks ")
do not appear. If one wants these delimiters, you have to introduce it explicitly in the string,
using an escaped quote :

/Reference/data-string/index.html
/Reference/auto_delimited/index.html

114 CHAPTER 12. ATOMIC ACTIONS

print "\"this string will appear quoted\""

prints the following to MAX/PD console

"this string will appear quoted"

Computing the receiver

Sometiimes it is necessary, or just handy, to specify the receiver of a message as the result of a
computation. In this case, the special construct @command is used:

@command(expression) argument_sequence

This action is performed in three steps:

• first the expression in the @command is evaluated.

• Then the resulting value is interpreted as a string.

• At last this string is used as the Max/PD receiver of the message.

Examples of such computations often involve string concatenation, as in

ForAll $num in (4)
{

@command("spat" + $num) ($param[$num))
}

In this code, the ForAll construct iterates its body, which will send the four messages:

spat0 ($param[0])
spat1 ($param[1])
spat2 ($param[2])
spat3 ($param[3])

OSC Messages

Many people have been using message passing not only to control Max/PD objects, but also
to interact with processes living outside MAX/PD such as CSound, SuperCollider, etc.

To make their life easier, Antescofo comes with a builtin OSC server. The OSC protocol
can be used to interact with external processes using UDP messages. It can also be used
to make two Antescofo objects interact within the same patch. The management of OSC
messages is achieved in Antescofo through 4 primitives.

/Reference/compound_forall/index.html
http://opensoundcontrol.org/index.html

OSC MESSAGES 115

OSCSEND

This keyword introduces the declaration of a named OSC output channel of communication.
The declaration takes the form:

oscsend name host : port msg_prefix

where:

• name is a simple identifier and refers to the output channel (used later to send messages).

• host is the optional IP address (in the form nn.nn.nn.nn where nn is an integer)
or the symbolic name of the host (in the form of a simple identifier or a string, like
localhost or “test.ircam.fr”). If this argument is not provided, the localhost (that is, IP
127.0.0.1) is assumed.

• port is the mandatory number of the port where the message is routed (e.g. between
49152 and 65535, see List of TCP and UDP port numbers).

• msg_prefix is the OSC address in the form of a string that will prefix the OSC message
send to this channel.

As soon as the OSC channel is declared, it is started and can be used to send messages.
Note that sending a message before the definition of the corresponding output channel is
interpreted as sending a message to MAX.

Sending an OSC message takes a form similar to sending a message to MAX or PD:

name arg\ensuremath{_1} arg\ensuremath{_2} ...

This action construct and send the osc message

msg_prefix arg\ensuremath{_1} arg\ensuremath{_2} ...

where msg_prefix is the OSC address declared for name. Note that to handle
different message prefixes, different output channels have to be declared.

The character / is accepted in an identifier, so the usual hierarchical name used in OSC
message prefixes can be used to identify the output channels. For instance, the declarations:

oscsend extprocess/start test.ircam.fr : 3245 "start"
oscsend extprocess/stop test.ircam.fr : 3245 "stop"

can be used to later invoke

0.0 extprocess/start "filter1"
1.5 extprocess/stop "filter1"

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

116 CHAPTER 12. ATOMIC ACTIONS

OSCRECEIVE

This keyword introduces the declaration of an input channel of communication. The declaration
takes the form:

oscrecv name port msg_prefix $v\ensuremath{_1} $v\ensuremath{_2} ...

where:

• name is the identifier of the input channel, and its used later to stop or restart the
listening of the channel.

• port is the mandatory port number where the is received.

• On the previous port, the channel accepts messages with OSC address msg_prefix.
Note that for a given input channel, the message prefixes have to be all different.

• When an OSC message is received, the argument are automatically assigned to the
variables $v1, $v2. . . If there is less variables than arguments, the remaining arguments
are simply thrown away (and an error message is emitted). Otherwise, if there is less
arguments than variables, the remaining variables are untouched (and an error message
is emitted).

Currently, Antescofo accepts only the following OSC types: bool, int32, int64, float, double,
string and the arrays markers bracketing sequence of these values (nested arrays are allowed).
These value are converted respectively into boolean, integer, float, string and bracketed
sequence are converted into tab.

A Whenever can be used to react to the reception of an OSC message: it is enough to put
one of the variables $vi as the condition of the whenever.

The reception is active as soon as the input channel is declared.

OSCON and OSCOFF

These two commands take the name of an input channel. Switching off an input channel
stops the listening and the message that arrives after, are ignored. Switching on restarts the
listening. These commands have no effect on an output channel.

Conversion between OSC types and Antescofo types

Sending (or receiving) an OSC message implies the conversion of an Antescofo value into an
OSC value (or the reverse). The conversion is applied following the following mapping

Antescofo value OSC value
bool bool
int int32
int int64

Float float
Float double

/Reference/compound_whenever/index.html

WRITING IN A FILE 117

Antescofo value OSC value
string string
string symbol
tab see function [@set_osc_handling_tab]

Antescofo value types that are not present in the table are not handled (e.g. proc or nim).
The handling of tab can be changed using the [@set_osc_handling_tab] functions. By default,
Antescofo sends the elements of a tab as the successive arguments of a message, without using
the OSC array facilities. A call to @set_osc_handling_tab(true) switches the behavior
to rely on the array feature present in OSC v1.1. A call to @set_osc_handling_tab(false)
switches to the default behavior (tab flattening).

Writing in a File

In the current Antescofo version, it is only possible to write an output file. The schema is
similar to that of an OSC message: first, a declaration opens and binds a file to a symbol.
This symbol is then used to write out in the file. Then the file is eventually closed. Here is a
typical example:

openoutfile out "/tmp/tmp.txt" opt_int
; ...
out "\n\tHello Wolrd\n\n"
; ...
closefile out

The action openoutfile opens the file. Currently, there is only one possible mode to
open a file: if it does not exist, it is created. If it already exists, it is truncated to zero at
opening.

After openoutfile, the symbol out (a simple identifier) can be used to write in file
/tmp/tmp.txt in a syntax that mimic messages. A “message” out is followed by a list
of closed expressions, as for OSC or MAX/PD messages. Special characters in strings are
interpreted as usual.

The optional integer opt_int at the end of the command openoutfile is used to
minimize the impact of the i/o on the scheduling. It is interpreted as follows:

• If negative or null, the buffer associated to the file is shrunk to zero and the outputs are
always flushed immediately to the file system.

• If positive, this number is used as a multiplier of the default file buffer system size.
Factors greater than one increase the size of the buffer and thus reduce the number of
effective i/o. The effect is usually negligible.

If the i/o’s interfere with the scheduling, consider using the host environment to implement
them (i.e. relying on Max or PD buffer to minimize the impact on time sensitive resources)1.

1The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

/Reference/7-scalar/index.html#proc-values
/Reference/data-nim/index.html
/Reference/data-tab/index.html
http://en.wikipedia.org/wiki/Regular_expression

118 CHAPTER 12. ATOMIC ACTIONS

The file is automatically closed at exit. Be aware that because of file buffering, the content
of the file may be not entirely written on disk before closing it. If not explicitly closed, the file
remains open between program load, start and play command.

It is possible to save an Antescofo value in a file to be read somewhere else, or to dump the
value of some variables to be restored later (or in another program execution). See functions
[@savevalue], [@loadvalue], [@dump], [@dumpvar] and [@loadvar].

Assignments

The assignment of a variable by the value of an expression is an atomic action:

let $v := exp

Notice the assignation symbol is :=. The operators = and == denote the equality predicate.
The keyword let is optional but more clearly distinguishes between the delay and the assigned
variable:

$d $x := 1 ; is equivalent to
$d let $x := 1

In the previous example, the delay is specified by an expression: the variable $d, and the
let outlines that the assigned variable is $x and not $d.

A variable has a value before its first assignment: the Undefined value.
Expressions exp in the right hand side of := are described in chapter Expressions.
The identifier of the assigned variable in the left hand side can be replaced by an underscore

_ which is useful to spare a variable when the result of the expression in the right hand side is
not needed. This is the case if the expression is evaluated for its side-effects, like dumping
values in a file. This action

_ := exp

simply evaluates the right hand side and discards the result.
Antescofo variables can be assigned from outside Antescofo, using the message setvar in

Max or PureData, or an OSC message, see below.

Assignment to Vector Elements and to Scoped Variables

The left hand side of is not restricted to variables. As a matter of fact, there are three kinds
of assignments:

Assignment to a variable

let $x := exp

the assignment of an element in a tab:

/Reference/7-scalar/index.html#the-undefined-value
/Reference/6-expression/index.html

ASSIGNMENTS 119

let e[i\ensuremath{_1}, i\ensuremath{_2}, ...] := exp

where e is an expression that evaluates to a tab and i1 , i2, . . . , evaluate to integers (see
sect. mutating a tab element)

the assignment of a local variable in an exec:

let e.$x := exp

where e is an expression that evaluates to an exec see Exec and outsideScope.
The keyword let is mandatory when expressione is more complex than a variable, i.e. in

the last two kinds of assignment.

Activities Triggered by Assignments

The assignment of a value to a variable may trigger some activities:

• the evaluation of a whenever that depends on this variable;

• the reevaluation of the delays that depend on a relative tempo that depend on this
variable;

• the reevaluation of the synchroniztion strategies that depend on this variable.

As mentioned in section Delays, the expression specifying a delay is evaluated only once,
when the delay is started. It is not re-evaluated after that, even if the variable in the expression
are assigned to new values. However, if the delay is expressed in relative time, its conversion
in physical time is dynamically adjusted when the corresponding tempo changes.

External Assignments

A global variable may be assigned “from outside Antescofo” in two ways:

1. using the message setvar to the Antescofo object in Max or PureData,

2. using an OSC message.

Section OSCreceive describes the assignment of variables upon the reception of an OSC
message.

A simple patch using the setvar message is pictured below. The message takes as its first
argument the name of the Antescofo variable to assign.

If there is only a second argument, this argument becomes the value of the variable.
Max/PD integers, floats and stringss are handled. If there are several remaining arguments,
these arguments are put in a tab (see and the the variable is assigned with this tab value.

External assignments trigger the whenever that may watch the externally assigned
variables, cf. whenever. For example, with the patch pictured below, the program:

/Reference/data-tab/index.html#mutating-a-tabs-element
/Reference/7-scalar/index.html#exec-value
/Reference/exp_variable/index.html#accessing-a-local-variable-from-outside-its-scope-of-definition
/Reference/compound_whenever/index.html
/Reference/action_ref/index.html#delays
/Reference/atomic_osc/index.html#oscreceive
/Reference/compound_whenever/index.html

120 CHAPTER 12. ATOMIC ACTIONS

whenever ($tab)
{

print "I just received the vector " $tab
}

will write

I just received the vector 13 23 25

on the console when the prepend setvar ...is activated.

Figure 12.1: Example of setvar

Unassignable variables

System variables and special variables cannot be assigned:

$BEAT_POS $DURATION $ENERGY $LAST_EVENT_LABEL
$MYSELF $NOW $PITCH $RCNOW
$RNOW $RT_TEMPO $SCORE_TEMPO $THISOBJ

These variables are read-only for the composer: they are assigned by the system during
the performance. However, like usual variables, their assignment (by the system) may trigger
some activities. See section Variables and Notifications.

Aborting and Cancelling an Action

An atomic action takes “no time” to be processed. So, aborting an atomic action is irrelevant:
the action is either already fired or not fired. On the other hand, Compound Actions act as

/Reference/exp_variable/index.html
/Reference/4-compound/index.html

ABORTING AND CANCELLING AN ACTION 121

containers for others actions and thus span over a duration. We say that a compound action
is active when it has been fired but some of its nested actions are still waiting to be fired.
Only compound actions can be aborted; however, the action of aborting is atomic (occurs in
an instant)2. Aborting an action only has a visible effect while it is active.

Cancelling an action refers to another notion: the dynamic suppression of an action from
the score. This feature is deprecated since version 0.9: a conditional action can often be
used instead and is at the same time more expressive and more efficient.

Aborting an Action

After a compound action has been launched, it can be aborted, meaning that the nested
atomic actions that remain will not be fired. There are two forms of termination:

abort name
abort expression

where name is the label of an action and expression evaluates to an Exec.

Termination through a label

If the abort’s argument is a label, then active actions with that label (and their children)
will be aborted. The command has no effect on atomic actions or compound actions with no
children.

Above, the plural is used (“active actions”) because one label can be shared by several
distinct actions: in this case, all active actions labeled by name are aborted together. One
action can also occur several times (e.g. the body of loop, or the body of a whenever statement).
All occurrences of an action labeled by name are aborted.

The command also accepts the name of a process as argument. In this case, all active
instances of this process are aborted.

Termination through an exec

The argument of abort can be an expression. In this case the expression is evaluated and must
return an Exec. Only this exec will be terminated by the command.

Abort and the hierarchical structure of compound actions

By default, the abort command applies recursively on the whole hierarchical structure of
actions (cf. section Compound actions). Notice that the actions launched by a process call in
a context C are considered as descendants of C.

The attribute [@norec] can be used to abort only the top level action of the compound.
Here is an example:

2Because termination is an atomic action, the abort command is presented here but its understanding
presumes some knowledge on compound actions.

/Reference/7-scalar/index.html#exec-value
/Reference/compound_loop/index.html
/Reference/compound_whenever/index.html
/Reference/atomic_termination/index.html
/Reference/7-scalar/index.html#exec-value
/Reference/4-compound/index.html
/Reference/atomic_termination/index.html
/Reference/4-compound/index.html

122 CHAPTER 12. ATOMIC ACTIONS

group G1 {
1 a\ensuremath{_1}
1 group G2 {

0.2 b\ensuremath{_1}
0.5 b\ensuremath{_2}
0.5 b\ensuremath{_3}

}
1 a\ensuremath{_2}
1 a\ensuremath{_3}

}
2.5 abort G1

The action abort takes place at 2.5 beats after the firing of G1. At this date, actions a1
and b1 have already been fired. The results of the abort is to suppress the future firing of a2,
a3, b2 and b3. If line 11 is replaced by

2.5 abort G1 @norec

then, actions a2 and a3 are aborted but not actions b2 and b3 which will be performed.

Abort handler

Abort commands can be issued from eveywhere in the code, making difficult to express some
dedicated actions to do when the compound action is terminated, actions that are not needed
when the compound action reaches its natural end3.

A direct implementation of this behavior is provided by abort handlers. An abort handler
is a group of actions triggered when a compound action is terminated by an abort. Abort
handlers are specified using an [@abort] clause with a syntax similar to the syntax of the
[@action] clause of a curve:

CompoundAction ... @abort := { ... }
{

...
}

An handler can be defined for all compound actions. The scope of the handler is the scope
introduced by the compound actions (if any): local variables introduced eventually by the
compound action are accessible in the handler.

When a handler associated to a compound action is spanned by an abort command, the
handler cannot be killed by further abort command (in other words, abort handler cannot be
aborted).

Notice that abort commands are usually recursive, also killing the children spanned by
the abort target. If these children have themselves handlers, they will be triggered when
terminating the target. However, the order of activation is not specified and can differ from
one execution to another.

3The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

/Reference/atomic_termination/index.html
/Reference/atomic_termination/index.html
/Reference/compound_curve/index.html
/Reference/atomic_termination/index.html
/Reference/atomic_termination/index.html
/Reference/atomic_termination/index.html
http://en.wikipedia.org/wiki/Regular_expression

INTERNAL COMMANDS 123

A Paradigmatic Example

A good example of the use of abort handlers is given by a curve that samples some parameter
controlling the synthesis of a sound. On some event, the synthesis must be stopped, but this
cannot be done abruptly: the parameter must go from its current value to some predetermined
value, e.g. 0, in one beat. This is easily written:

Curve C
@grain := 0.5
@action := { print "curve: " $x }
@abort := {

print "Curve C aborted at " $x
Curve AH

@grain := 0.2
@action := { print "handler curve: " $x }

{
$x { { $x } 1 { 0.0 } }

}
}

{
$x { { 0.0 } 10 { 10.0 } 10 { 0.0 } }

}

When an abort is issued, the curve is stopped and the actions associated to the abort
handler are launched. These actions create a new curve with the same control variable $x,
starting from the current value of $x to 0.0 in one beat. A typical trace is (the command is
issued at 1.5 beats):

print: curve: 0.
print: curve: 0.5
print: curve: 1.
print: curve: 1.5
print: Curve Aborted at 1.5
print: handler curve: 1.5
print: handler curve: 1.2
print: handler curve: 0.9
print: handler curve: 0.6
print: handler curve: 0.3
print: handler curve: 0.

Internal Commands

Internal commands correspond to the MAX or PD messages accepted by the antescofo~
object in a patch. The “internalization” of these messages as primitive actions makes the
control of the MAX or the PD antescofo~ object possible from within the score itself. For
example, it is posisble to switch the follower on or off when a specific musical event is reached.

Internal commands are named

/Reference/compound_curve/index.html
/Reference/atomic_termination/index.html

124 CHAPTER 12. ATOMIC ACTIONS

antescofo::xxx

where the suffix xxx is the head of the corresponding MAX/PD message recognized by
antescofo~. The exaustive list of internal commands is given below together with their
arguments. But first we focus on a set of very important commands used to navigate the
score. These commands are critical in reharseal or during the design phase, as they evades the
linearity of the score.

Controlling the Execution Flow

These commands are also messages (from the Max or PD patch) to the Antescofo object (in
this case, without the prefix antescofo::). They control the execution flow of an Antescofo
program :

• antescofo::start (no argument) Sends initialization actions (before first event) and wait
for follower.

• antescofo::play (no argument) Simulates the score (instrumental+electronics) from the
beginning until the end or until stop.

• antescofo::startfromlabel string antescofo::startfrombeat float Executes the score
from current position to position specified by the argument (a label given by a string or
a position in beats) in accelerated more WITHOUT sending messages. Then waits for
follower (or user input) right before this position.

• antescofo::scrubtolabel string antescofo::scrubtobeat float Executes in accelerated
more the score from current position to position specified by the argument WITH sending
messages up to (and not including) the specified position. Then waits for follower (or
user input). The position is given by a lable (a string) or a position in beats.

• antescofo::playfromlabel string antescofo::playfrombeat float Executes the score from
current position to position specified by the argument in accelerated more WITHOUT
sending messages, then PLAYs (simulates) the score from thereon.

• antescofo::playtolabel string antescofo::playtobeat float Play (simulate) score from
current position up to position specified by the argument.

• antescofo::gotolabel string antescofo::gotobeat float Position the system on the
position specified by the argument without doing anything else.

List of internal commands

• antescofo::actions string inhibits (string = "off") or enables (string = "on") the
launch of actions on events recognition. This is different from muting a track: muting a
track inhibit the sending of some Max/PD messages while this command inhibit the
performance of all actions.

• antescofo::add_completion_string string defines a new completion string to a running
and connected Ascograph (Mac only).

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/tracks/index.html
/Reference/atomic_command/index.html
http://forumnet.ircam.fr/user-groups/ascograph/index.html

INTERNAL COMMANDS 125

• antescofo::analysis int int specifies a new FFT windows length and a new hop size for
the audio analysis.

• antescofo::ascographwidth_set int defines the width of the Ascograph window. Look
also some parameters of the interface in the inspector of the Antescofo MAX object.

• antescofo::ascographheight_set int defines the height of the Ascograph window. Look
also some parameters of the interface in the inspector of the Antescofo MAX object.

• antescofo::ascographxy_set int int defines the x and y position of the window. Look
also some parameters of the interface in the inspector of the_Antescofo_ MAX object.

• antescofo::asco_trace int turn on (int=1) or off (int = 0) the Ascograph tracking of
the score position when is Antescofo is running in following mode.

• antescofo::before_nextlabel (no argument) force the progression of the score following
up-to the next label, launching the actions between the current point and the next label,
but still waiting its occurence.

• antescofo::bpmtolerance float reserved command.

• antescofo::calibrate int turn calibration mode on (1) or off (1).

• antescofo::clear (no argument) clear all preloaded scores.

• antescofo::decodewindow int changes the length of the decoding window used in the
inference of the position.

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
http://forumnet.ircam.fr/user-groups/ascograph/index.html
/Reference/atomic_command/index.html
http://forumnet.ircam.fr/user-groups/ascograph/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
http://forumnet.ircam.fr/user-groups/ascograph/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html

126 CHAPTER 12. ATOMIC ACTIONS

• antescofo::filewatchset string (Max only) watch the file whose path is given by the
argument, to reload it when changed on disk (the file is suppose dto be the source of the
current score).

• antescofo::gamma float change an internal parameter of the score following engine.

• antescofo::get_current_score (no argument) send to a running and connected the source
of the current score.

• antescofo::get_patch_receivers (no argument) reserved command.

• antescofo::getlabels (no argument) send to the first outlet the list of events label. Corre-
spond to the get_cues message accepted by the object.

• antescofo::gotobeat float position the follower at a position specified in beat without
doing anything else. See below for moving in score commands.

• antescofo::gotolabel string position the follower on an event specified by its label
without doing anything else.

• antescofo::harmlist float ... (a list of floats corresponding to a vector) specify the
list of harmonics used in the audio observation.

• antescofo::info (no argument) print on the console output various informations on the
version, and the current status of the object. Usefull when reporting a problem.

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html

INTERNAL COMMANDS 127

• antescofo::killall (no argument) abort all running processes and actions.

• antescofo::mode int reserved command.

• antescofo::mute string mute (inhibits the sending) of the messages matched by a track.

• antescofo::nextaction (no argument) forces the follower to wait for the next event that
has some associated actions. The actions triggered between the current position and the
new one, are launched.

• antescofo::nextevent (no argument) forces the follower to wait for the first event that
appears after the current position. The actions between the current position and the
next event are launched.

• antescofo::nextlabel (no argument) forces the follower to wait for the next event that
has a label. The actions between the current position and the next event are launched.
The infered tempo is kept unchanged.

• antescofo::nextlabeltempo (no argument) same as but the elapsed time is used to adjust
the tempo.

• antescofo::nofharm int number of harmonics to compute for the audio analysis.

• antescofo::normin float set some internal parameter of the score following.

• antescofo::obsexp float set some internal parameter of the score following.

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html

128 CHAPTER 12. ATOMIC ACTIONS

• antescofo::pedal int enables () or disables () the use of a resonnance model in the audio
observation.

• antescofo::pedalcoeff float attenuation coefficient of the pedal model.

• antescofo::pedaltime float attenuation time of the pedal model.

• antescofo::piano int turn the follower in the piano mode (corresponding to a set of
parameters adjusted to optimize piano observation).

• antescofo::play (no argument) simulates the score (instrumental+electronics) from the
beginning until the end or until STOP.

• antescofo::playfrombeat float executes the score from current position upto the position
given by the argument in accelerated more WITHOUT sending messages, then PLAYs
(simulates) the score from thereon.

• antescofo::playfromlabel string executes the score from current position upto then
event specified by the argument in accelerated more WITHOUT sending messages, then
PLAYs (simulates) the score from thereon.

• antescofo::playstring string interpret the string argument as an sequence of actions and
perform it. This command is used by to evaluate a text region highlighted in the editor.
It can be used to evaluate on-the-fly actions that have been dynamically generated in an
improvisation scenario. Due to OSC limitation, the string size cannot be greather than
1000 characters. But see next command.

• antescofo::playstring_append string this command is used to evaluate on-the-fly a
string of size greather than 1000 characters. The sequence of actions must be broken in
a sequence of strings each of size less than 1000. Each of these pieces are processed in
turn by this command, except for the last one which uses

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html

INTERNAL COMMANDS 129

• antescofo::playtobeat float PLAY (simulate) score from current position up to position
specified by the argument.

• antescofo::playtolabel string PLAY (simulate) score from current position up to the
event specified by the argument.

• antescofo::preload string string preloads a score and store it under a name (the
second argument) for latter use.

• antescofo::preventzigzag string allow or disallow zig-zag in the follower. In non-zig-zag
mode, the default, the follower infer only increasing positions (except in the case of a
jump). In zig-zag mode, the follower may revise a past inference. This ability does not
impact the reactive engine : in any case, actions are performed without revision.

• antescofo::previousevent (no argument) similar to but looking backward in the score.

• antescofo::previouslabel (no argument) similar to but looking backward in the score.

• antescofo::printfwd (no argument) output the formatted print of the current program in
a new window.

• antescofo::printscore (no argument) output the formatted print of the current program
in a new window.

• antescofo::read string loads the corresponding score from the file specified by the
argument.

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html

130 CHAPTER 12. ATOMIC ACTIONS

• antescofo::report (no argument) reserved command

• antescofo::scrubtolabel string Executes the score from current position to the event
specified by the argument, in accelerated more WITH sending messages. Waits for
follower (or user input) right before this position.

• antescofo::scrubtobeat string Executes the score from current position to the position
given by the argument, in accelerated more WITH sending messages. Waits for follower
(or user input) right before this position.

• antescofo::setvar string numeric antescofo::setvar string string antescofo::setvar
string a1 a2 . . . assign the value given by the second argument to the variable named
by the first argument. If they are more than two arguments, the ai are packed into
a tab. Using this command, the environment may notify Antescofo some information.
For instance, Antescofo may react because the variable is in the logical condition of a
whenever. See external assignment.

• antescofo::score string loads the corresponding score (an alias of).

• antescofo::start string Sends initialization actions (before first event) and wait for
follower.

• antescofo::startfromlabel string Executes the score from current position to position
corresponding to in accelerated more WITHOUT sending messages. Waits for follower
(or user input) right before this position.

• antescofo::startfrombeat int Executes the score from current position to the given
position in accelerated more WITHOUT sending messages. Waits for follower (or user
input) right before this position.

• antescofo::static_analysis (no argument) reserved command

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/compound_whenever/index.html
/Reference/atomic_assignation/index.html#external-assignments
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html

INTERNAL COMMANDS 131

• antescofo::stop (no argument) stop the follower and abort the runing actions.

• antescofo::suivi int enables or disables the follower. Even if the follower is off, actions
may run and can be spanned and interaction with the environment may happens through
and .

• antescofo::tempo float specify an arbitrary tempo.

• antescofo::tempoinit int reserved command.

• antescofo::temposmoothness float adjust a parameter of the tempo inference algorithm.

• antescofo::tune float set the tuning base (default 440.0Hz).

• antescofo::unmute string unmute (allows the sending) of the messages matched by a
track.

• antescofo::variance float set the variance parameter of the inference algorithm.

• antescofo::verbosity int specify the level of system messages emitted during execution.

• antescofo::version (no argument) print the version of the object and various build
information on the console.

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html

132 CHAPTER 12. ATOMIC ACTIONS

Assertion

The action

@assert expression

checks that the result of an expression is true. If not, the entire program is aborted.
This action is provided as a facility for debugging and testing, especially with the standalone

version of Antescofo (in the Max or PD version, the embedding host is aborted as well, which
is not convenient).

Chapter 13

Compound Actions

Compound actions act as containers for others actions. They serve as temporal containers:
their purpose is to organizes actions in time, rather than in space (that is what data structures
are for). They can thus also be seen as control structures.

The actions “inside” a container (we also say “nested in” or refer to “child actions”) are
specified as a sequence of actions. Successive actions in the sequence are linked with one of
the three possible sequencing operators. These operators are described in section continuation
operators.

All child actions inherit some of the container’s attributes. The nesting of containers creates
a hierarchy which can be visualized as an inclusion tree. The father of an action A is its
immediately enclosing container F, if it exists, and A is a child of F.

The nesting of actions can be explicit. This is the case for a (sub-)group nested in a group
(see below): the textual fragment of the score that defines the sub-group is part of the text
that defines the enclosing group. But the nesting of action can also be implicit. This is the
case for the action launched by a process call: they are “implicitly nested” in the caller.

We first present the group structure. It gathers several actions logically within a same
block that share common properties of tempo, synchronization and error handling strategies.
The group is the basic container: all other compound actions are variations on this structure

• a loop is a sequential iteration of a group,

• a curve is also a sequential periodic iteration of a group,

• a forall is a parallel iteration of a group,

• an if or a switch is a choice between several groups to launch, at some point in time,

• a whenever is a conditional choice in time of the launching of a group,

• a process call or an object instantiation is the launching of an abstract group.

All compound actions are guarded by an optional end clause that limits its scope of execution.
The [@exclusive] attribute may also be specified to prevent the overlapping execution of the
same action.

In a sequence of actions, two successive actions are related by a continuation operator.

133

/Reference/compound_continuation/index.html
/Reference/compound_continuation/index.html
/Reference/compound_group/index.html
/Reference/compound_group/index.html
/Reference/compound_loop/index.html
/Reference/compound_curve/index.html
/Reference/compound_forall/index.html
/Reference/compound_if/index.html
/Reference/compound_if/index.html
/Reference/compound_whenever/index.html
/Reference/compound_process_creation/index.html
/Reference/compound_process_creation/index.html
/Reference/compound_group/index.html#aborting-a-group
/Reference/compound_continuation/index.html

134 CHAPTER 13. COMPOUND ACTIONS

General Syntax of a Compound Action

{!BNF_DIAGRAMS/compound_actions.html!}

Loop

Figure 13.1: loop

ForAll

Figure 13.2: forall

135

Figure 13.3: if

If

Whenever

Figure 13.4: whenever

Continuation operators

The three continuation operators link two successive actions in a sequence of actions. It
is not possible to specify an attribute for the resulting actions, but it is easy to embed this
sequence as the body of a group and to specify the attributes for this group.

/Reference/compound_continuation/index.html

136 CHAPTER 13. COMPOUND ACTIONS

Group

The group construction gathers several actions logically within one block that shares common
properties of tempo, synchronization and errors handling strategies in order to create polyphonic
phrases.

The actions of a group are launched sequentially and the group organizes their precise
temporal relationships: a group is a timeline and the actions of the group are actions
scheduled on this timeline. Each group has a temporal scope which defines how time passes
in the timeline. More generally, a temporal scope can be specified for all compound actions.
Temporal scopes are implicitly defined through attributes of compound actions: [@tempo] and
synchronization attributes. This notion will be developped in the next chapter Management
of Time. In this chapter, we focus on the syntax and the hierarchical structure of compound
actions.

The general syntax of a group is defined by the following diagram:
{!BNF_DIAGRAMS/group.html!}
The specification of the label, Attributes and end clause are optional. The label

is a simple identifier that acts as a label for the group.
There is a short notation for a group without optional parameters and attributes: its actions

are simply be written between braces. For example:

action\ensuremath{_1}
{ 0.5 action\ensuremath{_2} }
action\ensuremath{_3}

/Reference/time_fabric/index.html
/Reference/time_synchro/index.html
/Reference/5-synchro/index.html
/Reference/5-synchro/index.html

GROUP 137

is equivalent to

action\ensuremath{_1}
Group {

0.5 action\ensuremath{_2}
}
action\ensuremath{_3}

Some groups are implicit. For example, the actions following an event are members of an
implicit group named top_gfwd_xxx where xxx is a unique number in the score 1. And all
child actions of a compound action take place in a implicit group, often called the body of this
compound action (e.g., the body of a loop, the body of a process, etc.).

Action Sequence

The actions of a group are arranged in a sequence. Two consecutive actions in this sequence
are launched together, in parallel. For instance

let $x := 0
print $x

will be launched in the same instant. Nevertheless, actions that occur in the same instant
are ordered: this is the synchrony hypothesis. So, in the previous example, a 0 will be printed.

The temporal scope of a group is used to interpret the relative delays that appears optionally
in front of an action. For example:

Group G @tempo := 120
{

1 action\ensuremath{_1}
2 action\ensuremath{_2}

}

With the launch of group G, the delay of the first action is evaluated into 1, and then
nothing happens until 1 beat at tempo 120 is elapsed. At this moment action1 is launched
and the delay preceeding action2 is evaluated. Etc.

The quantity of physical time corresponding to a relative delay is specified by the tempo of
the group. The way of counting this quantity depends of the synchronization strategy of the
group.

The sequencing of actions in a group can be modified using continuation operators. The
==> operator is used to launch an action after the end of the preceding one and +=> is used
to launches at the end of the previous one including its children. The end of a group is the
launch of the last action in its action sequence (if this action has a delay, the group ends with
the start of this delay). For example

1The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages
http://en.wikipedia.org/wiki/Regular_expression

138 CHAPTER 13. COMPOUND ACTIONS

let $start := $RNOW
Group G
{

1 action\ensuremath{_1}
2 action\ensuremath{_2}
Group GG
{

1 action\ensuremath{_3}
1 action\ensuremath{_4}

}
}
==> print OK ($start - $RNOW)

will print OK 3 ($RNOW gives the relative time) because G ends at soon as GG is started
and GG is started with action2. But, if the continuation operator ==> is changed for +=>:

let $start := $RNOW
Group G
{

1 action\ensuremath{_1}
2 action\ensuremath{_2}
Group GG
{

1 action\ensuremath{_3}
1 action\ensuremath{_4}

}
}
+=> print OK ($start - $RNOW)

then OK 5 will be printed because the +=> operator will execute the print message at
the end of all actions spanned directly or indirectly by G.

These features will be discussed more in depth in chapters continuation and temporal scope.

The Nested Structure of Groups

Groups, and more generally compound actions, can be nested arbitrarily. We illustrate below
the nesting of groups specified by

Group G
{

action\ensuremath{_0}
1 action\ensuremath{_1}
1 Group G1

{
action\ensuremath{_2}

1 action\ensuremath{_3}
action\ensuremath{_4}

}

/Reference/exp_variable/index.html
/Reference/compound_continuation/index.html
/Reference/time_fabric/index.html

GROUP 139

2 Group G2
{

3 action\ensuremath{_5}
action\ensuremath{_6}

}
action\ensuremath{_7}
Group G3
{

action\ensuremath{_8}
Group G31
{

2 action\ensuremath{_9}
action\ensuremath{_1}\ensuremath{_0}

}
action\ensuremath{_1}\ensuremath{_1}

}

}

as a tree making explicit the father/child relationships

Figure 13.5: nested structure of a group

and as a timeline showing the temporal organization
In this last diagram, the width of an action actioni (abbreviated ai) is not relevant. A

group is pictured as a rectangle containing its childs but this is merely a graphical convention:
a group ends with the start of its last action.

Instances of a Group

A group is related to either an event or another action. When the event occurs or the action
is triggered, the group waits for the expiration of its delay before sequentially launching the
actions that comprise it. We say that an instance of the group is created and launched. The

140 CHAPTER 13. COMPOUND ACTIONS

Figure 13.6: exemple temporal organization of nested groups

GROUP 141

instance is considered alive while there is an action of the group waiting to be launched. In
other words, an instance expires when the last action of the corresponding group is performed.
It is possible to refer to the instance of a group through a special kind of values called Exec.

We make a distinction between the group and its instances because several instances of the
same group can exist and can even be alive simultaneously. Such instances are created by
loop, forall, etc. These constructions are described in the rest of this chapter.

Local variables

Variables local to a sequence of actions can be declared using the [@local] keyword. A [@local]
declaration is not an action, and can appear anywhere in the sequence. The introduced
variable is:

• local to each instance of the action sequence (two instances do not share the variable);

• its scope (where the variable’s name is recognized) is the whole sequence where it is
defined and all enclosed actions;

• and its lifetime (when the variable can be read and written) is the lifetime of the sequence
and its children. The variable cease to exist once the last nested action has expired.

Notice that a local variable can be safely accessed by a child action, even if the group where
it has been defined has expired.

See section Variables for further information.

Aborting a Group

There are several ways to provoque the premature end of a group, or more generally, of any
compound action:

• using an abort action,

• using a until (or a while) logical clause,

• using a during temporal clause

Note that when the name of a group is used in an abort action, all alive instances of this
group are killed. It is possible to kill a specific instance using the exec that refers to this
instance.

The two last mechanisms are called end clauses.

The until and the while Clause

The specification of a group may include an optional until clause that is checked before
the triggering of an action of the group:

/Reference/7-scalar/index.html#exec-value
/Reference/exp_variable/index.html
/Reference/atomic_termination/index.html
/Reference/compound_group/index.html#the-until-clause
/Reference/compound_group/index.html#the-until-clause
/Reference/compound_group/index.html#the-during-clause
/Reference/atomic_termination/index.html
/Reference/7-scalar/index.html#exec-value

142 CHAPTER 13. COMPOUND ACTIONS

$x := false
Group G {

1 $x := true
1 print DONE

} until ($x)

The word DONE will never be printed because the group is aborted when $x becomes true.
More exactly the expression $x is checked each time a action must be launched. And if true,
the group is terminated instead of proceeding with the action. So, with the following program:

{
$x := false

1 $x := true
1 $x := false

}
Group G {

3 print DONE
} until ($x)

the word DONE will be printed even if the $x variable has been set to true. As a matter
of fact, at date 3 beats, the variable is false again (notice that in { ... } Group G {
.... } there are two groups that are spanned in parallel).

There is another way to represent the until keyword: using the contrary while statement.
Thus,

group ... { ... } until (exp)

is equivalent to

group ... { ... } while (! exp)

The during Clause

A during clause specifies temporal validity, i.e. the time a group is active. When this
time is exhausted, the group is aborted. This time can be specified

• in beats (relative time): [d]

• in (milli-)seconds (absolute time): [d s] or [d ms]

• or in number of logical instants: [d #].

For instance:

Group G {
1 $x := true
1 print DONE

} during [1.5]

GROUP 143

will launch the assignment 1 beat after the launching of but the message print is never
sent because is aborted 1.5 beats after its start.

The notation of a duration follows the notation used for the access to the history of a
variable. So

Group G {
; ...

} during [1.5 s]

will execute the actions specified by the group, up to 1.5 seconds after its start. And

Group G {
; ...

} during [1 #]

will execute the group only once. For example

Group GG
{

print GG 1
1 print GG 2
1 print GG 3
1 print GG 4
1 print GG 5
1 print GG 6
1 print GG 7

} during [4#]

will print:

GG 1
GG 2
GG 3
GG 4

because 4 logical instants after its activation, the group GG is aborted.
This last logical duration may seems useless for a group, but is very convenient to specify

the number of iterations of a loop or the maximal number of triggering of a whenever.

The @abort clause

Every compound action may have an abort handler specified through the [@abort] attribute.
The abort handler is a sequence of actions performed when the compound action is terminated
via an abort. It is not performed when the group is terminated via an end clause.

The scope of the handler is the scope introduced by the compound actions (if any): local
variables introduced by the compound action are accessible in the handler.

For example

/Reference/exp_variable/index.html#histories-access
/Reference/exp_variable/index.html#histories-access
/Reference/compound_loop/index.html
/Reference/compound_whenever/index.html
/Reference/atomic_termination/index.html
/Reference/atomic_termination/index.html

144 CHAPTER 13. COMPOUND ACTIONS

Group G @abort { print "DONE" }
{

print G 0
1 print G 1
1 print G 2
1 print G 3

}
1.8 abort G

will print:

G 0
G 1
DONE

A typical example of an abort handler is illustrated in section abort handler: they are
used to stop a curve arbitrarily with a “fade” leading the parameter to reach a final value
irrespectively of its value when the abort occurs.

The @exclusive Clause

The last figures of the previous section show that multiple instances of the same group spanned
by a compound action may overlap in time. Sometimes it is necessary to avoid this behavior:
this can be achieved using an @exclusive attribute on the compound action.

The effect of @exclusive is to abort any previous instances of the group (if they are still
active) when a new instance is triggered. The termination includes the eventual children of
the previous instances. Abort handlers are activated if there are any. The new instance is
triggered after the termination process.

Synchronization Attributes

Synchronization strategies like @loose and @tight

group ... @loose ... { ... }
group ... @tight ... { ... }

and error strategies like @local and @global

group ... @global ... { ... }
group ... @local ... { ... }

can be specified for a group and also for every compound action using the corresponding
attributes. If they are not explicitly defined, the attributes of an action are inherited from
the enclosing action. Thus, using compound actions, the composer can easily create nested
hierarchies (groups inside groups) sharing homogeneous behaviors.

Synchronization strategies are described in chapter Synchronization Strategies.

/Reference/atomic_termination/index.html
/Reference/atomic_termination/index.html
/Reference/atomic_termination/index.html
/Reference/time_synchro/index.html
/Reference/time_error/index.html
/Reference/time_synchro/index.html

LOOP: SEQUENTIAL ITERATIONS 145

Local Tempo

A local tempo can be defined for a group using the attribute @tempo:

group G @tempo := exp ... { ... }

exp is an arbitrary expression that defines the passing of time for the delay of the actions
of that are expressed in relative time in the group, see chapter Management of Time.

With a local tempo, you can create, for example, an accelerando. In the next example, we
use a variable to specify a local tempo and we control this variable with a curve (see Curve).
That way, we can write a group where all durations are equal. It’s the variation of the local
tempo variable that creates the accelerando.

curve tempVariation @grain := 0.05s
{ $localtemp

{ { 60 } 1 { 120 } }
}

group G @tempo := $localtemp
{

action1
1/4 action2
1/4 action3
1/4 action4
1/4 action5
1/4 action6
1/4 action7
1/4 action8

}

Loop: Sequential Iterations

{!BNF_DIAGRAMS/loop.html!}
The loop construction

loop optional_label period { loop_body }

is similar to a group but instead of being performed once, the actions in the loop body
are iterated depending on a period specification giving the time elapsed between two loop
iterations:

Loop L 0.5
{ print $NOW }

will print:

/Reference/5-synchro/index.html
/Reference/compound_curve/index.html

146 CHAPTER 13. COMPOUND ACTIONS

0
0.5
1
1.5
...

The instances of the loop body are evaluated as independent groups. So, if the period is
shorter than the duration of the body of the loop, successive iterations will overlap:

$i := 0
Loop L1 1
{

@local $j
$j := $i
$i := $i+1
print "start" $j

2 print "stop" $j
}

will print:

start 0
start 1
stop 0
start 2
stop 1
stop 2

Here, when the body of the loop is instantiated, the global variable $i is copied in the
local variable $j: $i can then be updated to count the iteration but $j records the iteration
number for a given loop body. The loop period is 1 beat and the duration of the body is 2
beats. So two successive instances of the loop body overlap and their printing are interleaved.
Notice that the local variable is local to a loop body instantiation (they are as many $j as
concurrent loop bodies).

The overlapping of two iterations of the loop body can be avoided, see [@exclusive] below.

Loop Period

The period of a loop is an expression evaluated at each iteration and is used to schedule the
next iteration. So the duration between two iterations can change as the time progress and
the iterations are not necessarily periodic.

The period expression is a duration, i.e., it can be absolute or relative.

$period := 1

LOOP: SEQUENTIAL ITERATIONS 147

Figure 13.7: loop

Loop $period s
{

print $NOW
0.5 s let $period := $period + 1

}

will print:

0
1
3
6
10
15
...

When the loop is launched at time 0 second, the body is also launched for the first time and,
in parallel, the next iteration is scheduled with the current value of the period (which at this
time is 1 second). A 0 is printed. After 0.5 seconds, the variable $period is incremented.
At date 1 second, the period for the next iteration is evaluated (to 2) and the second iteration
is launched (printing a 1). So after 1+2 seconds, the third iteration takes place and print a 3,
etc.

In addition, the period expression can evaluate to a tab (i.e., a vector): in this case, the
elements of the vector are the successive periods of the loop. Note that the periods are taken
cyclically in the vector. The s or ms qualifier can be used to specify that the tab elements are
given in absolute time instead of relative time:

/Reference/data-tab/index.html

148 CHAPTER 13. COMPOUND ACTIONS

$p := [100, 200, 400, 800]

Loop $p ms
{

print $NOW
}

will print:

0
0.1
0.3
0.7
1.5
1.6
...

Stopping a Loop

The optional until or while clauses are evaluated at each iteration and eventually stop the
loop. For instance, the declarations on the left produce the timing of the action’s firing
figured in the right:

let $cpt := 0
loop L 1.5
{

$cpt := $cpt + 1
0.5 a\ensuremath{_1}
0.5 a\ensuremath{_2}

}
until ($cpt >= 3)

The previous loop can also be written using a during clause. Logical times corresponds to
loop iterations, so:

loop L 1.5
{

/Reference/compound_group/index.html#the-until-clause
/Reference/compound_group/index.html#the-until-clause
/Reference/compound_group/index.html#the-during-clause

LOOP: SEQUENTIAL ITERATIONS 149

0.5 a\ensuremath{_1}
0.5 a\ensuremath{_2}

}
during [3#]

is equivalent to the previous loop. Because the loop period is 1.5, three loop iteration will
last 4.5 beats, so it can be also written:

loop L 1.5
{

0.5 a\ensuremath{_1}
0.5 a\ensuremath{_2}

}
during [4.5]

If an end clause is not provided, the loop will continue forever but it can be killed by an
explicit abort command:

loop ForEver 1 { print OK }
3.5 abort ForEver

In the case above, OK will only be printed three times.

Instantaneous Iteration

A period of zero (in relative or absolute time) is perfectly legal: all iterations take place in the
same instant:

Loop 0ms
{

print "OK at " $NOW
} during [100#]

will print 100 times OK at xxx at date xxx.
Instantaneous iterations can be used for instance to perform computations on a data-

structure (but see also the iteration expression allowed in function definitions).
However, an infinite loop with a zero period implies to perform an infinite number of

computations in finite time, which is not possible. For this reason, there is a run-time security:
if there is no end clause, the run-time aborts the loop if the number of successive iterations
with a period of zero reaches a predefined limit of 10000.

Avoiding Overlapping Iterations: [@exclusive]

As mentioned above, two iterations of a loop body may overlap. In some case this is not the
intended behavior: the previous iteration must be stopped before starting the new iteration of
the loop body. This is achieved by specifying the attribute [@exclusive] for the loop: with this
attribute, the previous iteration and its eventual childs are aborted. For instance, the program

/Reference/compound_group/index.html#aborting-a-group
/Reference/atomic_termination/index.html
/Reference/9-functions/index.html#extended-expressions
/Reference/compound_group/index.html#aborting-a-group

150 CHAPTER 13. COMPOUND ACTIONS

$i := 0
loop 1 @exclusive
{

@local $id
$i := $i + 1
$id := $i

loop 0.25 { print iteration $id at $NOW }
}

2 antescofo::killall

will print the trace at the left. Without the attribute, the trace is given on the right:

iteration 1 at 0.0
iteration 1 at 0.25
iteration 1 at 0.5
iteration 1 at 0.75
iteration 2 at 1.0
iteration 2 at 1.25
iteration 2 at 1.5
iteration 2 at 1.75
iteration 2 at 2.0

iteration 1 at 0.0
iteration 1 at 0.25
iteration 1 at 0.5
iteration 1 at 0.75
iteration 2 at 1.0
iteration 1 at 1.0
iteration 1 at 1.25
iteration 2 at 1.25
iteration 1 at 1.5
iteration 2 at 1.5
iteration 1 at 1.75
iteration 2 at 1.75
iteration 2 at 2.0

Notice that without the attribute, there are two iterations of the loop body that execute
the print command at the same date. With the attribute, each iteration of the loop body
occurs at disjoint time intervals.

See also the section Priority for the management of actions that take place at the same
date.

/Reference/time_priority/index.html#action-priority

PARALLEL ITERATIONS 151

Synchronization Attributes of a Loop

The loop body is an implicit group and the instances of the loop body are childs of the loop.
So, synchronization attributes, like [@tempo], defined at the loop level, are inherited by them.

Parallel Iterations

{!BNF_DIAGRAMS/forall.html!}
The loop construction iterates the triggering of a group (the loop body): one body instance

is triggered after the other, with a given interval (the loop period). The action ForAll (for
parallel iteration) instantiates a group in parallel for each element in an iteration set. The
simplest example is the iteration on the elements of a tab:

$t := tab [1, 2, 3]
forall $x in $t
{

(3 - $x) print OK $x " at time" (3 - $x) " = (3 - " $x ")"
}

will trigger in parallel a group for each element in the tab referred by $t. For each group,
the iterator variable $x takes the value of its corresponding element in the tab. It is implicitly
a local variable, not visible outside the ForAll body.

The result of this example is to print in sequence

OK 3 at time 0 = (3 - 3)
OK 2 at time 1 = (3 - 2)
OK 1 at time 2 = (3 - 1)

The general form of a parallel iteration is:

forall $var in expression
{

; action sequence
}

where expression evaluates to a int, a tab or a proc:

• If the iteration set n is an int, the values of the iterator are the integers 0, ..., (n− 1) if
n is positive, and (n+ 1), (n+ 2), ..., 0 if n is negative.

• If the iteration set is a tab, the values of the iterator are the tab’s elements.

• If the iteration set is a proc or an obj, the values of the iterator are the exec that
correspond to the proc’s or obj’s instances.

Parallel iterations also accept a map for the iteration set. In this case, the syntax introduces
two variables to refers to the keys and the values in the map:

/Reference/compound_loop/index.html
/Reference/compound_forall/index.html
/Reference/data-tab/index.html
/yet-to-be-written.html
/Reference/data-tab/index.html
/Reference/7-scalar/index.html#proc-values
/Reference/actors/index.html
/Reference/7-scalar/index.html#exec-value
/yet-to-be-written.html

152 CHAPTER 13. COMPOUND ACTIONS

$m := map { (1, "one"), (2, "two"), (3, "three") }
forall $k, $v in $m
{

print $k " => " $v
}

will print:

1 => one
2 => two
3 => three

There is also a parralel iteration expression allowed only in the context of a function
definition, see the section extended expressions.

Curve (continuous action)

Many computer music controls are by nature continuous. Curves in Antescofo allow users
to define such actions and to delegate the rest of the hard work to Antescofo, which takes
care of correct arrival and interpolations between parameters. The construction allows for
the definition of continuously sampled actions on break points and detailed control of the
interpolation between them. Curves are defined by a sequence of break points and their
interpolation methods along with specific attributes. As time passes, the curve is traversed and
the corresponding action fired at the sampling point. Curves can be scalar (one-dimensional)
or vectorial (multi-dimensional).

We introduce Curves2 starting with a simplified and familiar syntax of linear interpolation
and move on to the complete syntax and showcase details of Curve construction.

Simplified Curve Syntax

The simplest continuous action to imagine is the linear interpolation of a scalar value between
a starting and ending point with a duration, similar to line objects in Max or Pd. The
time-step for interpolation in the simplified curve is 30 milli-seconds and hard-coded. This
can be achieved using the simplified syntax as shown in

Curve level 0.0, 1.0 2.0 s

In this example, the action constructs a line starting at 0.0, going to 1.0 in 2.0 seconds
and sending the results to the receiver object level. The initial point 0.0 is separated by
a comma from the destination point. The destination point consists of a destination value
(here 1.0) and the time to achieve it (2.0s in this case). At each sampling point x, a message
level x is sent to the environment.

Another facility of Simplified Curves is their ability to be chained. The score excerpt below
shows the score where a second call to :::antescoof curve level is added on the third
note. This new call does not have a starting point and only has a destination value:

2The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

/Reference/9-functions/index.html#extended-expressions
/Reference/compound_curve/index.html
http://en.wikipedia.org/wiki/Regular_expression

CURVE (CONTINUOUS ACTION) 153

Figure 13.8: Simplified Curve syntax and its realisation in Ascograph

Curve level 0.5 1.0

Both Curves also act on the same receiver level. This means that during performance, the
second curve will take on from whatever value of the prior curve and arrives to its destination
(here 0.5) at the given time (here 1.0 beat).

Figure 13.9: Chaining Simplified Curve

Note that the second curve in the figure above cannot be visualised by Ascograph. This is
because its starting point is a variable whose value is unknown and depends on where and when
the prior curve arrives during performance. Moreover, by calling simplified curves as above
you can make sure that the first curve does not continue while the second is running. This is
because of the way Simplified Curves are hard-coded. A new call on the same receiver/action
will cancel the previous one before taking over.

The reason for the malleability of Simplified Curves is because they store their value as a
variable. A new call on the same receiver aborts prior calls and takes the latest stored value as

/Reference/atomic_termination/index.html

154 CHAPTER 13. COMPOUND ACTIONS

departing point if no initial point is given. You can program this yourself using the complete
curve syntax.

The simplified curve is thus very similar to line object in Max or PD. That said, it is
important (and vital) that the first call to Simplified Curve have an initial value. Otherwise,
the departing point is unknown and you risk receiving NaN values (not-anumber) until the
first destination point!

To summarize, starting a simplified curve is written:

curve max_receiver starting_point , final_point duration

and chaining a simplified curve is written:

curve max_receiver final_point duration

{!BNF_DIAGRAMS/simplified_curve.html!}
where cexp are closed expressions.
The action fired at the sampling point of a simplified curve is restricted to be a message with

only one argument: the sampled value. Replacing the receiver with a bracketed @command
construct, it is possible to have more general messages and even to compute the receiver of
the message:

curve @command { receiver arg\ensuremath{_0} arg\ensuremath{_1} } starting_point , final_point duration

where receiver and the argi are closed expressions, will send the message:

@command(receiver) arg\ensuremath{_0} arg\ensuremath{_1} x

for each sampling point x of the curve (see the [@command] keyword for computing the
receiver of a message). The chained version is similar:

curve @command { receiver arg\ensuremath{_0} arg\ensuremath{_1} } final_point duration

The simplified command hides several important properties of Curves from users and are
there to simplify calls for simple linear and scalar interpolation. For example, the time-step
for interpolation in the above curve is 30 milli-seconds and hard-coded. A complete curve
allows for adjustment of such parameters, several kinds of multi-dimensional interpolations,
complex actions, and more. From here we will detail the complete curve syntax.

Full Curve Syntax

A curve iterates a sequence of actions (specified with the [@action] attribute) on each sampling
point (defined by the [@grain] attribute) of a piecewise function. The piecewise function is
defined by multiple sub-functions, each sub-function applying to a certain interval defined by
breakpoints. Between two breakpoints, the function is defined by an interpolation type, the
delay between the breakpoint and the value of the general function at the breakpoints.

/Reference/6-expression/index.html#auto-delimited-expressions
/Reference/compound_curve/index.html
https://en.wikipedia.org/wiki/Piecewise

CURVE (CONTINUOUS ACTION) 155

Piecewise functions defined this way are also called breakpoint functions or BPF. They
are implemented in Antescofo as nim. Nim offers a powerful data structure to compute
Piecewise functions and the curve construction acts as a nim player by sampling the nim in
time.

In this section, we mainly discuss the curve construction that directly embeds the specifica-
tion of the underlying BPF.

Scalar Curve

The example below shows a simple curve defined in two pieces. The Curve has the name
C and starts at a value of 0. Two beats later, the curve reaches 2 and ends on 4 after 8
additional beats. Between the breakpoints, the interpolation is linear, as indicated by the
string "linear" after the keyword @type. Linear interpolation is the default behaviour of a
curve (hence it can be dismissed).

curve C
@action := { level $a },
@grain := 0.1
{

$a
{

{ 0 } @type "linear"
2 { 2 } @type "linear"
8 { 4 }

}
}

In the above example, variable $a, called the curve parameter, ranges over the curve.
Its value is updated at a time-rate defined by attribute @grain which can be specified in
absolute time or in relative time. Each time $a is updated, the @action sequence, which
can refer to $a, is triggered.

Vectorial Curve

It is easy to apply curves on multi-dimensional vectors as shown in the following example:

curve C

/Reference/data-nim/index.html
/Reference/data-nim/index.html
/Reference/data-nim/index.html

156 CHAPTER 13. COMPOUND ACTIONS

{
$x, $y, $z
{

{ 0, 1, -1 }
4 { 2, 1, 0 }
4 { -1, 2, 1 }

}
}

Figure 13.10: image

In the above example, all values in the three-dimensional vector share the same breakpoints
and the same interpolation type. It is also possible to split the curve to multiple parameter
clauses as below to allow different breakpoints between the curve elements:

curve C
{

$x
{

{ 0 }
2 { 0 }
0 { 1 }
3 { -1 }

}
$y
{

{ 1 }
3 { 2 }

}
}

In the above example, curve parameters $x and $y have different breakpoints. The
breakpoint definition on $x shows how to define a sudden change on a step-function with
a zero-delay value. Incidentally, note that the result is not a continuous function on [0, 5].
The parameter is defined by only one pair of breakpoints. The last breakpoint has its time
coordinate equal to 3, which ends the function before the end of $x.

CURVE (CONTINUOUS ACTION) 157

Figure 13.11: image

The figure [1] below shows a simple 2-dimensional vector curve on Ascograph. Here, two
variables $x and $y are used to sample the curve and are referenced in the action. They share
the same breakpoints but can be split within the same curve. The curve is also aborted at
event2 when the abort command is called with the curve’s name.

Figure 13.12: image

Editing Curve with Ascograph

Using Ascograph, you can graphically interact with curves, as long as the curve parameters are
constant. If this is the case, it is possible to move breakpoints vertically (changing their values)
and horizontally (time position) by mouse, assigning new interpolation schemes graphically
(control-click on breakpoint), splitting multi-dimensional curves and more.

For many of these operations on multi-dimensional curves, each coordinate should be
represented separately. This can be done by pressing the button on the Curve box in
which will automatically generate the corresponding text in the score. Each time you make
graphical modifications on a curve in Ascograph, you need to press APPLY to regenerate the
corresponding text.

The figure below shows the curve of the previous example [1] embedded on the event score,
split and in the process of being modified by a user.

/Reference/atomic_termination/index.html

158 CHAPTER 13. COMPOUND ACTIONS

Figure 13.13: image

In the following sections we will get into details of Curve attributes: namely [@action],
timing [@grain], and interpolation methods [@type]. But before that, we will describe the
textual syntax. Knowing the textual syntax is important when defining curve whose parameters
are defined by full expressions.

Textual Definition of a Full Curve

{!BNF_DIAGRAMS/full_curve.html!}

Actions Fired by a Curve

Each time a parameter is assigned, the action specified by the attribute [@action] is also fired.
The value of the attribute is a sequence of actions. Usually, it is a simple message but arbitrary
actions are allowed, for instance :

curve C
@action := {

print $y
2 action\ensuremath{_1} $y
1 action\ensuremath{_2} $y

}
{ ... }

At each sampling point, the value of $y is immediately sent to the receiver print. Two
beats later action1 will be fired and one beat after that action2 will be fired.

This sequence of actions is an implicit group and cannot have attributes, but a group can
be nested for that end:

curve C

/Reference/compound_group/index.html

CURVE (CONTINUOUS ACTION) 159

@action := {
Group @tempo := 120
{

print $y
2 action\ensuremath{_1} $y
1 action\ensuremath{_2} $y

}
}
{ ... }

If the [@action] attribute is absent, the curve simply assigns the parameters specified in its
body. This can be useful in conjunction with other parts of the code if the parameters are
refered in expressions or in other actions. In the next example, a curve is used to dynamically
change the tempo of a loop

Curve
@grain := 5ms
{

$x { {60} 10 {120} }
}

Loop 1
@tempo := $x
{

print loop $NOW
}
until ($x >= 105)

will print:

0.0
0.954669
1.83255
2.64963
3.41704
4.14287
4.83321
5.49282
6.12547
6.73421
7.32156

Grain, Duration and Breakpoints Specifications

In the previous example, the time step (the sampling rate of the curve) called grain size
and specified with the @grain attribute, is expressed in absolute time while breakpoints’
durations are expressed in relative time. However, durations and grains can be freely expressed
in absolute or relative time.

/Reference/compound_loop/index.html

160 CHAPTER 13. COMPOUND ACTIONS

The grain size can be as small as needed to achieve perceptual continuity. However, in the
MAX/PD environments, one cannot go below 1ms (the temporal precision of the host).

The grain specifies only a maximal duration between two sampling points. This freedom is
used by Antescofo to ensure that the actions fired by the curve will be fired for each breakpoints
boundaries.

Grain size and duration, as well as the values at breakpoints, can be closed expressions too.
Grain size is evaluated at each sampling point, which makes it possible to change dynamically
the time step.

The values of the breakpoint are evaluated once: when the curve is fired.

Curve Playing a NIM

A single value can be used as an argument of the curve parameter. In this case, the expression
is expected to evaluate to a NIM, allowing the user to dynamically build breakpoints and their
values as a result of computation. The syntax has already been described:

Curve ... { $x : e }

defines a curve where the breakpoints are taken from the value of the expression e. This
expression is evaluated when the curve is triggered and must return a nim value. The NIM is
used as a specification of the breakpoints of the curve. Notice that, when a NIM is “played”
by a curve, the first breakpoint of the NIM coincides with the start of the curve.

For example

$nim := NIM { ... }
; ...
Curve
@tempo := 30,
@grain := 0.1s,
@action := { print $x }
{ $x : $nim }

Any expression can be used which evaluates to a NIM. So, the following code plays a
random NIM taken in a vector of 10 NIMs:

$nim1 := NIM { ...}
$nim2 := NIM { ...}
; ...
$nim10 := NIM { ...}

$tab := [$nim1, $nim2, ..., $nim10]
; ...
Curve
@tempo := 30,
@grain := 0.1s,
@action := { print $x }
{ $x : $tab[@rand(11)] }

/Reference/6-expression/index.html#auto-delimited-expressions
/Reference/data-nim/index.html
/Reference/data-nim/index.html
/Reference/data-nim/index.html

CURVE (CONTINUOUS ACTION) 161

A typical situation is to play a NIM chosen from a repertoire of NIMs in a specified time
interval $dur. In this case, directly playing the NIM with the curve is not appropriate, because
the NIM will be played with its natural length. Fortunately, processes like NIMplayer make
the desired behavior easy to code.

$Nim1 := NIM { 0. 0.,0.05 1 "quad",
0.1 0.2 "quad_out",
0.85 0. "cubic" }

$Nim2:= NIM { 0. 0.,0.05 1.,
0.9 1.,
0.05 0. }

@proc_def ::NIMplayer($NIM, $dur)
{

curve readNIM
@grain := 0.02s,
@action := { print ($NIM($x)) }
{

$x
{ { (@min_key($nim)) }

$dur { (@max_key($nim)) }
}

}
}

NOTE 69 4
::NIMplayer($Nim1, 4)

The playing of the NIM is controlled by a curve. The functions [@min_key] and [@max_key]
are used to get the definition interval of the nim $nim.

Interpolation Methods

The specification of the interpolation between two breakpoints is given by an optional string.
The keyword @type is mandatory only when a variable is used to specify the interpolation
type. Using a variable makes it possible to compute the interpolation type, e.g. when a curve
is embedded in a process and there is a need to parameterize the interpolation type.

A linear interpolation is used by default. Antescofo offers a rich set of interpolation methods,
mimicking the standard tweeners used in flash animation3. There are 10 different types:

• linear, quad, cubic, quart, quint: which correspond to polynomial of degree respectively
one to five;

• expo: exponential, i.e. αeβt+δ + γ

3Inbetweening or tweening is the process of generating intermediate frames between two images to give
the appearance that the first image evolves smoothly into the second image. The page Tweeners illustrates
the standard tweens to control the successive positions of a point, illustrating the use of tweens to control the
apparent speed and to achieve different qualities of movement.

https://en.wikipedia.org/wiki/Inbetweening
http://wiki.xbmc.org/?title=Tweeners
http://hosted.zeh.com.br/tweener/docs/en-us/misc/transitions.html

162 CHAPTER 13. COMPOUND ACTIONS

• sine: sinusoidal interpolation α sin(βt+ δ) + γ

• back: overshooting cubic easing (α+ 1)t3 − αt2

• circ: circular interpolation α
√

(βt+ δ) + γ

• bounce: exponentially decaying parabolic bounce

• elastic: exponentially decaying sine wave

With the exception of the linear type, all interpolations types come in three “flavors”
traditionally called ease:

• in (the default) which means that the derivative of the curve is increasing with the time
(usually from zero to some value),

• out when the derivative of the curve is decreasing (usually to zero),

• and in_out when the derivative first increases (until the midpoint of the two breakpoints)
and then decreases.

The corresponding interpolation keywords are listed below and illustrated in the next
figures. Note that the interpolation can be different for each successive pair of breakpoints.
These interpolation methods are also available for NIM (but NIM includes a richer set of
interpolation types).

"back"
"back_in"
"back_in_out"
"back_out"

"bounce"
"bounce_in"
"bounce_in_out"
"bounce_out"

"circ"
"circ_in"
"circ_in_out"
"circ_out"

"cubic"
"cubic_in"
"cubic_in_out"
"cubic_out"

"elastic"
"elastic_in"
"elastic_in_out"
"elastic_out"

/Reference/data-nim/index.html
/Reference/data-nim/index.html

CURVE (CONTINUOUS ACTION) 163

"exp"
"exp_in"
"exp_in_out"
"exp_out"

"quad"
"quad_in"
"quad_in_out"
"quad_out"

"quart"
"quart_in"
"quart_in_out"
"quart_out"

"quint"
"quint_in"
"quint_in_out"
"quint_out"

"sine"
"sine_in"
"sine_in_out"
"sine_out"

Programming an Interpolation Method.

If your preferred interpolation method is not included in the list above, it can be easily
programmed. The idea is to apply a user defined function to the value returned by a simple
linear interpolation, as follows:

@fun_def @f($x) { ... }
...
curve C
@action := { print (@f($x)) },
@grain := 0.1
{

$x
{ { 0 } @linear

1s { 1 }
}

}

The curve will interpolate function @f between 0 and 1 after it starts, over the course of
one second and with a sampling rate of 0.1 beats.

Examples of Interpolation Types

In the pictures below:

164 CHAPTER 13. COMPOUND ACTIONS

• The label xxx[0] corresponds to the ease in, that is to the type "xxx_in" or equiva-
lently "xxx".

• The label xxx[1] corresponds to the ease out, i.e. the interpolation type "xxx_out".

• And the label xxx[2] corresponds to the ease in_out, i.e. interpolation method
"xxx_in_out".

Open the imge on another window to enlarge the plot.

CURVE (CONTINUOUS ACTION) 165

166 CHAPTER 13. COMPOUND ACTIONS

Curve Synchronization

Synchronization attributes apply to curve. To understand the effect of synchronization
strategies on curve, it is usefull to understand the curve as a group whose actions are the
curve’s action iterated at each sampling point:

curve C
@grain := d
@action := { ... action\ensuremath{_i} ... }
{ $x { {start} ... {end} } }

is really a shorthand for4:

4The equivalent group given here is only an approximation because the grain d is dynamically computed

IF AND SWITCH: CONDITIONAL AND ALTERNATIVE 167

Group G
{

$x := start
{ ... action\ensuremath{_i} ... }

d $x := ...
{ ... action\ensuremath{_i} ... }

d $x := ...
{ ... action\ensuremath{_i} ... }

...
d $x := end

{ ... action\ensuremath{_i} ... }
}

The synchronization attributes simply apply to this group.

IF and SWITCH: Conditional and Alternative

IF: Conditional Actions

{!BNF_DIAGRAMS/if.html!}
A conditional action is a construct that performs different actions depending on whether a

programmer-specified boolean condition evaluates to true or false. A conditional action takes
the form:

if (boolean_expression)
{

... actions launched if the condition evaluates to true ...
}

or

if (boolean_expression)
{

... actions launched if the condition evaluates to true ...
}
else
{

... actions launched if the condition evaluates to false ...
}

Like other actions, a conditional action can be prefixed by a delay. Note that the actions in
the if and in the else clause are evaluated as if they are in a group. So, the delay of these
actions does not impact the timing of the actions which follow the conditional. For example

if ($x) { 5 print HELLO }
1 print DONE

and adjusted so that curve’s action is executed for each breakpoint boundaries (breakpoint’s duration are not
necessary a multiple of the grain size).

/Reference/7-scalar/index.html#boolean-values

168 CHAPTER 13. COMPOUND ACTIONS

will print DONE one beat after the start of the conditional independently of the value of the
condition.

The actions of the “true” (resp. of the “else”) parts of a condition are members of an
implicit group named xxx_true_body (resp. xxx_false_body) where xxx is the label of
the conditional itself. The attribute of if are used for these groups.

There are also conditional expressions (sections Conditional Expression and Extended
Expression If) that share a similar syntax.

Any kind of Antescofo value can be interpreted as a boolean value, see sections scalar values
and data structures.

SWITCH: Alternative Actions

Alternative actions extend conditional actions to handle several alternatives. At most one of
the alternative will be performed. They are two forms of alternative actions, without and with
selector, which differ by the way the alternative to execute is chosen.

There are also alternatives expressions (section switch expression) that share a similar
syntax in the context of function definitions.

Alternative Actions without Selectors

{!BNF_DIAGRAMS/switch.html!}
An alternative action without a selector is simply a sequence of cases guarded by expressions.

The guards are evaluated in the sequence order and the action performed is the first case
whose guard evaluates to a true value. So :

switch
{

case e\ensuremath{_1}: a\ensuremath{_1}
case e\ensuremath{_2}: a\ensuremath{_2}
; ...

}

(where e1, e2. . . are arbitrary expressions and a1, a2. . . are sequences of actions) can be
rewritten in:

if (e\ensuremath{_1}) { a\ensuremath{_1} }
else
{

switch
{

case e\ensuremath{_2}: a\ensuremath{_2}
; ...

}
}

If no guard is true, then no action is performed. Notice that several actions can be associated
to a case : they are launched as a group.

/Reference/exp_cond/index.html
/Reference/9-functions/index.html#the-extended-expression-if
/Reference/9-functions/index.html#the-extended-expression-if
/Reference/7-scalar/index.html
/Reference/8-data/index.html
/Reference/9-functions/index.html#the-extended-expression-switch

IF AND SWITCH: CONDITIONAL AND ALTERNATIVE 169

Here is an example where the evaluation order matters: the idea is to rank the value of the
variable $x. The following code

whenever ($PITCH)
{

switch
{

case $PITCH < 80:
$octave := 1

case $PITCH < 92:
$octave := 2

case $PITCH < 104:
$octave := 3

}
}

uses a whenever to set the variable $octave to some value each time $PITCH is updated
for a value below 104.

Note that the actions associated to a case are evaluated as if they are in a group. So the
eventual delay of these actions does not impact the timing of the actions which follows the
alternative. And like other actions, an alternative action can be prefixed by a delay.

Alternative Action with a Selector

{!BNF_DIAGRAMS/switch2.html!}
In this form, a selector is evaluated and checked in turn against each guard of the cases:

switch (s)
{

case e\ensuremath{_1}: a\ensuremath{_1}
case e\ensuremath{_2}: a\ensuremath{_2}
; ...

}

The evaluation proceeds as follows: the selector s is evaluated and then, the result is
checked in turn with the result of the evaluation of the ei:

• If ei evaluates to a function, this function is assumed to be a unary predicate and
is applied to s. If the application returns a true value, the sequence of actions ai is
performed.

• If ei is not a function, the values of s and ei are compared with the operator ==. If it
returns a true value, the sequence of actions ai is performed.

The evaluation start with e1 and stops as soon as an action is performed for one of the ei.
If no guard checks true, no action is performed.

For example:

/Reference/compound_whenever/index.html

170 CHAPTER 13. COMPOUND ACTIONS

switch ($x)
{

case 0:
$zero := true

case @size:
$empty := false
$zero := false

}

checks a variable $x and sets the variable $zero to true if $x == 0 or 0.0 (because 0.0
== 0). It then sets the variable $empty and $zero to false if $x refers to a non-empty tab
or to a non-empty map (because function [@size] returns an integer which is 0 only if its
argument is an empty tab or an empty map).

Reacting to logical events

{!BNF_DIAGRAMS/whenever.html!}
The whenever statement allows the launching of actions conditionally on the occurrence of

a logical condition:

whenever optional_label (boolean_expression)
{

actions_list
}

The behavior of this construction is the following: The whenever is active from its firing
until its end. In absence of an end clause or of an abort command, the whenever will be
active until the end of the program execution.

When a whenever statement is active, each time a variable referred to by boolean_expression
is updated, the expression is re-evaluated. If the condition evaluates to true, the body of the
whenever is launched.

We stress the fact that only the variables that appear explicitly in the boolean condition
are tracked. We say that these variables are watched by the whenever.

The boolean expression can be replaced by temporal patterns which ease the specification
of complex events over time.

Nota Bene: multiple occurrences of the body of the same whenever may be active
simultaneously, as shown by the following example:

let $cpt := 0
0.5
loop 1 {

let $cpt := $cpt + 1
}
whenever ($cpt > 0) {

0.5 a\ensuremath{_1}
0.5 a\ensuremath{_2}

/Reference/compound_whenever/index.html
/Reference/compound_group/index.html#aborting-a-group
/Reference/patterns/index.html

REACTING TO LOGICAL EVENTS 171

0.5 a\ensuremath{_3}
} while ($cpt <= 3)

This example will produce the following schedule:

Figure 13.14: whenever schedule

Difference between conditional actions and whenever

Notice the difference between a conditional action and a whenever: a conditional action is
evaluated once when the flow of control reaches the action while the whenever is evaluated
as many times as needed to track the changes of the variables appearing in the condition,
between its firing and its end.

The whenever is a way to reduce and simplify the specification of the score, specifically
when actions have to be executed each time some condition is satisfied. It also escapes the
sequential nature of traditional scores. The actions resulting from a whenever statement are
not statically associated to an event of the performer but dynamically at some point in time
where a predicate becomes true.

The @immediate attribute

Note that the boolean condition is usually not evaluated when the whenever is fired because
the variables that appears in the whenever are usually not assigned in the same instant.

To force the evaluation of the boolean expression when the whenever is fired, one can use
the [@immediate] attribute. This attribute forces the evaluation of the boolean condition
when the whenever is fired, in addition to the evaluation caused by an update of the watched
variables.

Notice that if a watched variable is set in the same instant as the whenever is fired, it
does not necessarily trigger the whenever’s body, even if the condition is true: The watched
variable must be set after the activation of the whenever. For instance

whenever W1 ($y) { print "OK whenever 1 at " $NOW }
let $y := true
whenever W2 ($y) { print "OK whenever 2 at " $NOW }
1s
let $y := true

will print

/Reference/compound_if/index.html
/Reference/compound_whenever/index.html

172 CHAPTER 13. COMPOUND ACTIONS

OK whenever 1 at 0
OK whenever 1 at 1
OK whenever 2 at 1

because whenever W1 is triggered two times (at time 0 and time 1) while W2 is triggered
only once: at time 0, it is activated after the first assignment of $yand so cannot be triggered.

Instantaneous action that takes place in the same instant are executed sequentially: this is
the synchrony hypothesis. The order of execution within an instant depends on the action
priority.

Synchronization Attributes

Because the actions in the body of a whenever statement are not bound to an event or
another action, synchronization and error handling attributes of the body’s instances are the
those of the whenever’s activation.

Avoiding Overlapping Instances of a Body

The activation of a whenever fires a new group and two such groups may overlap in time.
Sometimes it is necessary to avoid this behavior. It can be done using an explicit abort:

$last_activation := 0
whenever (...)
{

abort $last_activation
$last_activation := $MYSELF
; ...

}

which kills the previous instance of the body, if any. The same behavior can be obtained
using the [@exclusive] attribute:

whenever (...) @exclusive
{

; ...
}

This attribute may also be used on other compound actions. See also section priority for
the management of actions that takes place at the same date.

Stopping a Whenever

An end clause can be defined for whenever. These clauses are evaluated each time the logical
condition must be evaluated, irrespective of its or value. For example,

$X := false
whenever ($X) { print "OK" $X } during [2 #]

/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages
/Reference/time_priority/index.html
/Reference/time_priority/index.html
/Reference/time_priority/index.html#action-priority
/Reference/compound_group/index.html#aborting-a-group

REACTING TO LOGICAL EVENTS 173

1.0 $X := false
1.0 $X := true
1.0 $X := true

will print only one OK because at (relative) time 1.0 the body of the logical condition is
false, at time 2.0 the logical condition is true, the body is launched and then the whenever is
stopped because it has been “tested” two times, i.e. [2 #].

Using a duration in relative time or in absolute time gives the a interval of time during
which it is active. When the duration is elapsed, the whenever cannot longer fire its body.

The previous example with logical time shows how to stop the whenever after two updates
of $X (whatever is the update). It is easy to stop it after a given number of bodies fire, using
a counter in the condition:

$X := false
$cpt := 0
whenever (($cpt < 1) && $X)
{

$cpt := $cpt + 1
print "OK" $X

}
1.0 $X := false
1.0 $X := true
1.0 $X := true

This will print only one OK at relative time 2.0. Then the counter is set to 1 and the
condition will always be false in the future.

However, the previous program will still leave the whenever active: the boolean condition
is still checked at each update of $cpt or $X. So its is better to use a logical end clause to
terminate the whenever

$X := false
$cpt := 0
whenever ($X)
{

$cpt := $cpt + 1
print "OK" $X

} while ($cpt < 1)
1.0 $X := false
1.0 $X := true
1.0 $X := true

One can also use an abort command.

Watching Restrictions

The whenever watches variables, not values. This means that the construction monitors
the updates of the variables that appear in the logical condition. When a variable is updated,
the logical condition is (re)evaluated to decide (if true) to launch the whenever’s body.

/Reference/atomic_termination/index.html

174 CHAPTER 13. COMPOUND ACTIONS

Additionally, the set of watched variables is determined by a syntactic analysis of the
boolean condition. Some systems’ variables are not managed as ordinary variables and cannot
be watched.

These constraints have several consequences that are reviewed below. Their rationale is to
ensure that Antescofo scores remain causal and efficiently implementable.

Assignment of a tab

In

whenever ($t) { ... }
; ...
let $t[0] := ...

the assigment of a tab element does not trigger the whenever even if the tab is referred
by a variable that appears in the whenever condition. As a matter of fact, the value of $t
is mutable, the assignment mutates this value but the variable assignation: $t always refers
to the same value.

Reference to a system variable

The three system variables $NOW, $MYSELF and $THISOBJ cannot be watched by a whenever.
The variable $NOW appears as continuously updated (there is no notion of quantum step in

time progression, so watching this variable amount to execute infinitely often the whenever’s
body, in a finite time interval). Notice that this is not the case for $RNOW which is updated
by discrete jumps at each musical events and meaningful actions.

Variables $MYSELF and $THISOBJ are not real variables: they are constants that denote
some exec linked to the context where they appear.

Reference to a scoped variable

This limitation is rather subtle. Refer to scoped variable to fully appreciate the code below:

let $g := {
@local $x
$x := false
whenever U ($x) { print "OK 1" }
10
print "end of G"

}
whenever V ($g.$x) { print "OK 2" }

2 let $g.$x := true ; [1]

The evaluation of this program will print

/Reference/data-tab/index.html
/Reference/7-scalar/index.html#exec-value
/Reference/exp_variable/index.html#accessing-a-local-variable-from-outside-its-scope-of-definition

REACTING TO LOGICAL EVENTS 175

OK 1
end of G

because V does not watch the local variable $x in the group denoted by $g. Only U is
triggered by the assignment [1].

As a matter of fact, the variable watched by V is restricted to $g: in the expression $g.$x,
$x is only a name, not a variable. The determination of the variable denoted by expression
$g.$x is dynamically computed and may change when $g is updated. The set of watched
variables is statically determined. Dynamically changing this set is considered too costly and
is not managed in the current Antescofo version.

One Activation per Instant

The variables watched by a whenever can be updated several times in the same instant.
Howevever, the whenever is fired at most once, with the first update that leads the condition
to evaluate to true. For example:

$a := false
$b := false
$c := false

1
whenever($a || $b || $c)
{

print WHENEVER activated at $NOW $a $b $c
}

1
$a := false
$b := true
$c := true

will print only

WHENEVER activated at 1.0 false true false

because the wehever is activated at most once per instant, as soon as possible.

Causal Score and Temporal Shortcuts

The actions triggered when the body of a whenever is fired, may fire other whenever,
including itself directly or indirectly. Here is an example:

let $x := 1
let $y := 1
whenever W1 ($x > 0)
{

176 CHAPTER 13. COMPOUND ACTIONS

let $y := $y + 1
}
whenever W2 ($y > 0)
{

let $x := $x + 1
}
let $x := 10 @label Start

When action Start is fired, the body W1 of is fired in turn in the same logical instant,
which leads to the firing of the body of W2 which triggers W1 again, etc. So we have an infinite
loop of computations that are supposed to take place in the same logical instant:

Start → W1 → W2 → W1 → W2 → W1 → W2 → . . .

This instantaneous infinite loop is called a temporal shortcut and corresponds to a non
causal score. The previous score is non-causal because the variable $y depends instantaneously
on the updates of variable $x and variable $x depends instantaneously of the update of the
variable $y.

The situation would have been much different if the $y assignments had been made after
some delay. For example:

let $x := 1
let $y := 1
whenever W1 ($x > 0)
{

1 let $y := $y + 1
}
whenever W2 ($y > 0)
{

1 let $x := $x + 1
}
let $x := 10 @label Start

also generates an infinite stream of computations but with a viable schedule in time. If is
fired at 0, then is fired at the same date but the assignment of will occurs only at date 2. At
this date, the body of is subsequently fired, which leads to the assignment of at date 3, etc.

0 : Start → W1 → 1 : $y := 1+1 → W2 → 2 : $x := 10+1 → W1
→ 3 : $y := 2+1 → W2 → 4 : $x := 11+1 → W1 → 5 : . . .

Automatic Temporal Shortcut Detection

Antescofo automatically detects temporal shortcuts and stops the infinite regression. This
behavior is a consequence of the rule “whenever are activated at most once per instant” and
no warning is issued.

Process Creation

A process is a group of actions that is triggered dynamically. A process call takes the following
form:

CONTINUATIONS 177

:: exp (a\ensuremath{_1}, a\ensuremath{_2}, ...)

where exp is an expression which evaluates into a proc and the ai are expressions that are
the parameters of the process instantiation.

A process call is a compound action: the duration of a call is the duration of the instantiated
group5.

Synchronization attributes, which are inherited by the instantiated group, may be specified.
However, the attribute [@exclusive] has no effect.

Refer to the chapter Process for an in-depth presentation.

Object Creation

The remarks for process creation also apply for object creation. Please refer to chapter [Object]
for a thorough presentation on that topic.

Continuations

{!BNF_DIAGRAMS/continuation.html!}
Performing an action at the end of a group (or any other compound action) may be difficult

if the delays of the group’s actions are expressions or if some conditional constructs are involved.
Even with constant delay and no control structure, computing the duration of a group, or a
loop/whenever/forall body, can be cumbersome.

This observation advocates for the introduction of two additional sequencing operators that
are used to launch an action at the end of the preceding one:

(no special name) followed-by ended-by
a b a ==> b a +=> b

b is launched together
with a

b is launched at the end of a b is launched at the end of a
and its eventual children

The juxtaposition (launch synchronously/in parallel), the followed-by operator (launch
at the end) and the ended-by operator (launch at child ends) are binary operators called
continuation combinators. Delays are not continuations6: they are unary operators applied to
an action to defer its start.

The effects of the three operators are illustrated by the figure below. The end of a compound
action is represented by the bold outlined rectangle. The child actions may end earlier or later
than the end of the top-level actions:

• The juxtaposition aligns the starts of two sequences;

5The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

6Because a delay can be used in front of the first action of a sequence, a delay does not necessarily links two
successive actions.

/Reference/7-scalar/index.html#proc-values
/Reference/10-process/index.html
http://en.wikipedia.org/wiki/Regular_expression

178 CHAPTER 13. COMPOUND ACTIONS

• the ==> “followed-by” opeartor align the end of the first sequence with the start of the
second;

• and the +=> “ended-by” aligns the latest end (the final launching of an action, including
a child action) with the start of the second sequence:

Figure 13.15: illustration of the continuation combinators

Continuation combinators do not change the scope of the local variables of their arguments.
In other words, in a ==> b the actions in b cannot access the local variables defined in a.

Continuation combinators freely compose between actions and are right associative. Here
are some examples:

Expression Meaning
a ==> b ==> c is equivalent to a ==> { b

==> c } and specifies that b
==> c starts at the end of a

{ a ==> b } ==> c starts c at the end of { a
==> b}, that is, with the end

of b

CONTINUATIONS 179

Expression Meaning
{ a ==> b } c starts c with the start of { a

==> b }, that is, with
the start of a a ==> b
c| is equivalent to a
==> { b c }and starts {
b c }with the end of a a

b ==> c| is
equivalent to { a b }

==> cand starts cwith
the end of { a b }, that
is, the end of b a +=>

b ==> c| is
equivalent to a +=> { b
==> c }and starts { b
==> c }at the end of
“ a‘ and its children”

For instance, suppose we want to make an action after the end of a loop:

$cpt := 0
Loop 1
{

print "tic" $cpt
3 print "tac" $cpt

$cpt := $cpt + 1
} during [3#]
+=> print "loop ended"

Here there will be 3 iterations of the loop. So, if the loop starts at date 0, the first iteration
starts at 0 and ends at 3, the second one starts at 1 and ends at 4 and the last one starts at 2
and ends at 5.

Instead of explicitly computing these numbers to launch an action at the right time, we
have used the continuation combinator +=> which waits the end of the loop and all the loop
bodies, to trigger the print message: the message "loop ended" will appear at date 5.

As you can see, the end of a loop is different from the ends of the loop bodies: the loop
in itself terminates when the last iteration is launched. As a matter of fact, the computation
associated to a compound action a can be seen as a tree, with the sub-computations rooted at
a. Thus, there is no need to maintain a after having launched the last sub-computation. So
the end of a is usually not the same as the end of the last sub-computation spanned by a and
this is why the operator is usually more handy than ==>.

Nevertheless, the end of an action is always precisely defined altough it can be only
dynamically known:

• atomic action: the start and the end of the action coincide.

• coumpound actions without duration: are actions that launch other actions but they do
not have a duration by themselves because they do not need to persist in time. Such

180 CHAPTER 13. COMPOUND ACTIONS

actions are the if, switch, and the forall. The start and the end of these actions coincide.
However, these actions have children: the actions launched by these constructs.

• compound actions with a duration: the start and the end of these actions usually differ:

– Group G { a ... b }: the start of G coincides with the start of a. The end
of G coincides with the start of b (the last action in the group). The children of
G are all actions launched directly (they appear explicitly in the group body) or
indirectly (they are launched by a child of G).

– Loop L { a }: the start of L coincides with the start of the first iteration of
a. The end L of coincides with the last iteration of a. The children of L are the
actions launched in the loop bodies.

– Whenever W { ... }: there is no relationship between the start of W and the
actions in it body. Usually, there is no end to a whenever except if there is a
during or an until clause. In this case, the whenever terminates when the clause
becomes true. The children of W are the actions launched by the instantiations of
the whenever body.

– A process call or an object instantiation: their end coincides with the end of the
associated instance. An object has no end per se and must be aborted.

Continuation and abort
Abort handlers launch a group at the premature end of a compound actions. So they differ

from the followed-by and ended-by operators that launches a group of actions at the (natural
or premature) end of an action.

An abort handler, specified by the [@abort] attribute, is considered as a child of the
associated action. So, when an abort handler exists and the associated action is aborted, the
abort handler is launched with the followed-by continuation (if it exists). Because the abort
handler is necessarily defined before, it happens before the followed-by continuation.

The ended-by continuation is launched after the end of the abort handler (because the
abort handler is a child).

Continuations are not considered children of the continued action. So in a ==> b, b do
not has access to the local variables of a, contrary to the @abort clause of a.

For example (note the bracketing of the process call):

@proc_def ::P()
@abort { print abort P $NOW }
{

print start P $NOW
10 print BAD END P $NOW

}

{ ::P() ==> print continuation P $NOW }

5
print "launch abort" $NOW
abort ::P

/Reference/compound_if/index.html
/Reference/compound_if/index.html
/Reference/compound_forall/index.html
/Reference/compound_whenever/index.html
/Reference/compound_group/index.html#the-during-clause
/Reference/compound_group/index.html#the-until-clause
/Reference/compound_process_creation/index.html
/Reference/compound_process_creation/index.html

NOTIONS OF TIME IN ANTESCOFO 181

will give the following trace:

start P 0.0
launch abort 5.0
abort P 5.0
continuation P 5.0

The continuation is launched at date 5.0 because it is launched with the end of the
instantiated process (here a premature end caused by the abort command). If the abort
handler is replaced by:

@abort { 11 print abort P $NOW }

the corresponding trace is:

start P 0.0
launch abort 5.0
continuation P 5.0
abort P 16.0

because the followed-by continuation does not wait the end of the abort handler. If we
replace the followed-by continuation by an ended-by continuation

{ ::P() +=> print continuation P $NOW }

the trace becomes:

start P 0.0
launch abort 5.0
abort P 16.0
continuation P 16.0

because the continuation takes place at the end of all of the action’s children, including the
abort handler.

NotionS of TIME in Antescofo

Real musical time is only a place of exchange and coincidence between an infinite number of
different times. Gérard Grisey

Antescofo claims to be a strongly timed7 computer music programming language, which
means that:

7ChucK has introduced the term strongly timed to qualify programing languages that handle time explicitly
as a first class entity. This is the case in Impromptu, where performative time is also considered in the context
of Live Coding, refer to the article Programming with time : cyber-physical programming with Impromptu.
The real-time systems community has long advocated for the inclusion of time in the domain of discourse and
not to consider it as an optimization problem or as a quality of service problem. See for example Motivating
Time as a First Class Entity (1987). The reference Computing Needs Time is a documented presentation of the
problematic.

/Reference/atomic_termination/index.html
http://chuck.cs.princeton.edu/index.html
http://eprints.qut.edu.au/55712/1/sorensen_ow_2010.pdf
http://repository.upenn.edu/cis_reports/288
http://repository.upenn.edu/cis_reports/288
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2009-30.pdf

182 CHAPTER 13. COMPOUND ACTIONS

Figure 13.16: image of clocks and metronoms

• time is a first class entity in the language, not a side-effect of the computations perfor-
mance, making time itself both controllable and explicitly computable;

• when a computation occurs is precisely specified and formalized8 guaranteeing behavior
predictability, temporal determinism and temporal precision;

• the behavior of an Antescofo program is free from underlying hardware timing and
nondeterministic scheduling in the operating system.

Several notions of time are at work in Antescofo. The composer defines potential temporal
relationships between musical entities in an augmented score. These relationships are expressed
through the temporal relationships between Antescofo actions and between actions and musical
events. During the performance, the potential temporal relationships specified by the composer
become actual relationships through the realization of musical events by the musician and the
computation of electronic actions by the computer. A unique feature of Antescofo is that the
composer is able to specify some constraints between the potential and the actual temporal
relationships.

8Cf. for instance José Echeveste’s PhD thesis

https://tel.archives-ouvertes.fr/tel-01196248/

THE MANUFACTURING OF TIME 183

Several “layers of time” at work in Antescofo. What depends of the composer/human performer
is in blue; what depends of the computer is in gray. Composers can express constraints between
the potential timing expressed in the score and the actual timing of the performance. These
constraints apply to the actual timing of the electronic actions.

This chapter presents the rich model of time provided by the DSL and the constraints that
can be expressed between the potential and the actual timing. The two following pages do not
regard specific technical or syntactic aspects of Antescofo, but they do contain essential ideas
about the language’s use of time:

• the manufacturing of time elaborates on the temporal notions that organize the compu-
tations of actions;

• the fabric of time elaborates on the relationships between the potential timing of musical
events expressed in the score, the actual timing of performer’s events and the actual
timing of the actions during the performance.

The Manufacturing of Time

In philosophy, the analysis of time by Kant distinguishes between two temporal entities,
instant and duration, that are linked by three temporal modes or relationships: succession,
simultaneity and permanence.

This analysis can be used to classify programming languages and computer music systems
by their handling of instant and duration:

• Dealing with succession and simultaneity of instants leads to the event-triggered or
event-driven view, where a processing activity is initiated as a consequence of the

/Reference/time_manufacturing/index.html
/Reference/time_fabric/index.html

184 CHAPTER 13. COMPOUND ACTIONS

occurrence of a significant event. For instance, this is the underlying model of time in
MIDI.

• Managing duration and permanence points to a time-triggered or time-driven view,
where activities are initiated periodically at predetermined points in real-time and last.
This is the usual approach in audio computation.

These two points of view9 are supported in Antescofo and the composer/programmer can
express his own musical processes in the most appropriate style. We will elaborate on this
point, along with some comparison with ChucK to better fix the idea. Indeed, ChucK exhibits
a complete and coherent model of time, relevant to both audio processing and the handling
of asynchronous events like MIDI and OSC messages or interactions with serial, and human
interface devices. In the next section, the fabric of time, we will discuss the unique capacity of
Antescofo to specify and manage several time references.

Instants and Succession: Sequential Languages

Sequential programming languages usually deal only with instants (which are the location in
time of elementary computations) and their succession. The actual duration of a computation
does not matter, nor does the interval of time between two instants: these instants are events.

This model is that of MIDI: basic events are note on and note off messages. There is
no notion of duration in MIDI: the duration of a note is represented by the interval of time
between a note on and the corresponding note off and it has to be managed externally to the
MIDI device, e.g. by a sequencer. In addition, two MIDI events cannot happen simultaneously.
So we cannot say for instance that a chord starts at some point in time, because starting the
emission of the notes of the chords are distinct sequential events.

Instants, Succession and Simultaneity: Synchronous Languages

In a purely sequential programming language, it is very difficult to do something at a given
date. We can imagine a mechanism that suspends the execution for a given duration and
wakes up at the given date, as in

sleep(12 p.m. - now()) ;
computation to do at 12 p.m.

or if we have a mechanism that suspends the execution until the arrival of a date or the
occurrence of an event:

wait(12 p.m.) ;
computation to do at 12 p.m.

wait(MIDI message) ;
process received message

9Event-Triggered versus Time-Triggered Real-Time Systems In Proceedings of the International Workshop
on Operating Systems of the 90s and Beyond, Vol. 563. Springer, Dagstuhl Castle, Germany, 87–101.

http://chuck.cs.princeton.edu/index.html
/Reference/time_fabric/index.html
http://scholar

THE MANUFACTURING OF TIME 185

Notice that the computation resumes after the date or the event. On a practical level, this
is usually negligible (e.g. usually chords can be emulated in MIDI using successive events).
However, at a conceptual level, it means that simultaneity cannot be directly expressed in the
language, which will make the specification of some temporal behaviors more difficult.

To express simultaneity in the previous code fragment, we have to imagine that computations
happen infinitely fast, allowing events to be considered atomic and truly synchronous. This is
the synchrony hypothesis whose consequences have been investigated in the development
of synchronous languages dedicated to the development of real-time embedded systems like
Esterel, Lustre or Lucid Synchrone.

Synchronous Languages

Synchronous languages have not only postulated infinitely fast computations, allowing two
computations to occur simultaneously, they have also postulated that two computations
occurring at the same instant are nevertheless ordered. This marks a strong difference
between simultaneity and parallelism (more on this below) and articulates, in an odd way,
succession and simultaneity10.

However, a formal model such as superdense time shows that there are no logical flaws in
the idea that actions occurring at the same date are performed in a specific order (see next
paragraph). Much better, this hypothesis reconciles determinism with the modularity and
expressiveness of concurrency: at a certain abstraction level, we may assume that an action
takes no time to be performed (i.e. its execution time is negligible at this abstraction level)
and we may assume a sequential execution model (the sequence of actions is performed in a
specific and well determined order) which imply deterministic and predictable behavior. Such
determinism can lead to programs that are significantly easier to specify, debug, and analyze
than nondeterministic ones.

A good example of the relevance of the synchrony hypothesis in the design of real-time
systems is the sending of messages, in MAX or PureData, to control some device. To change
the frequency of a sine-wave generator, the generator must have already been turned on. But
there is no point in postulating an actual delay between turning on the generator and changing
its frequency default value. The corresponding two messages are sent in the same logical
instant but in a specific order.

Another example is audio processing when computations are described by a global dataflow
graph. From the audio device perspective, time is discretized in instants corresponding to the
input and the output of an audio buffer. In one of these instants, all computations described
by the global graph happen together. However, in this instant, computations are ordered, e.g.
by traversing the audio graph in depth-first order, starting from one of several well-known
sinks, such as dac. Each audio processing node connected to the dac is asked to compute
and return the next buffer, recursively requesting the output of upstream nodes.

In section Thickness of an Instant we investigate the notion of an action’s priority used
to totally order the actions that occur within the same instant, even if they are not structurally
related in the program.

10Given two actions, one always precedes the other, but some successive actions can be simultaneous. Actions
that occur simultaneously occur in the same logical instant. Logical instants are ordered completely by
succession, just like actions within an instant.

http://www-sop.inria.fr/meije/esterel/esterel-eng.html/index.html
https://www.di.ens.fr/~pouzet/lucid-synchrone/index.html
/Reference/time_manufacturing/index.html#superdense-time

186 CHAPTER 13. COMPOUND ACTIONS

Superdense Time

For the curious reader, we give here a brief account of superdense time11, a simple formal
model of time supporting the synchrony hypothesis. This approach is used by the Antescofo
language for implementing a total order between actions execution.

Given a model of time T that defines a set of ordered instants, a superdense time SD[T] is
built on top of T to enable simultaneous but totally ordered activities on the same instant. An
instant in SD[T] is a pair (t, n) where t is an instant of T and n is a microstep (an infinitesimally
small unit of time occuring within a logical instant):

• t represents the date at which some event occurs,

• and n represents the sequencing of events that occurs simultaneously.

So, two dates (t1, n1) and (t2, n2) are interpreted as (weakly) simultaneous if t1 = t2, and
strongly simultaneous if, in addition, n1 = n2.

Thus, an event at (t1, n1) is considered to occur before another at (t2, n2) if either t1 < t2,
or t1 = t2 and n1 < n2. In other word, SD[T] is ordered lexicographically.

How does this relate to Antescofo ? In the figure below, the sequence of synchronous
actions appears in the vertical axis. So this axis corresponds to the dependency between
simultaneous computations. Notice that the (vertical) height of a box is used to represent
the logical dependencies while the (horizontal) length of a box represents a duration in time.
Note for example that even if durations of a1 and a2 are both zero, the execution order of
actions a0, a1 and a2 is the same as the appearance order in the score.

A delay, a period in a loop or a sample in a curve, correspond to a progression on the
horizontal axis. When these quantities are expressed in relative time, they depends on a
tempo which can be dynamic (i;e., it can change with the passing of time). Dynamic tempo
correspond to shrink or to dilate the horizontal axis, but the order of events on the timeline is
preserved.

Causality between computations (e.g. the evaluation of a sum must done after the evaluation
of the arguments of the sum) corresponds to succession on the vertical axis. Causality is
not enough to give a complete ordering of simultaneous action. For example, between two
simultaneous assignments:

let $x := $x + $y
let $y := $x + $y + 1

the final result is not the same following the succession of assignments performed by the
interpreter. Action priority is used to decide which one must be performed first. And in
Antescofo, the first assignment occuring in the score is performed first (as in mainstream
sequential programming languages).

Duration : Audio Processing Languages

In time-triggered system, activities are performed periodically, that is at time points predefined
by a given duration. This duration matches the dynamics of these activities. In these systems,

11Claudius Ptolemaeus, Editor, System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org,
2014. (section 1.7.2)

/Reference/time_priority/index.html
http://ptolemy.org/systems

THE MANUFACTURING OF TIME 187

Figure 13.17: superdense time in Antescofo

188 CHAPTER 13. COMPOUND ACTIONS

the computation are driven by the passing of time, not by the occurences of logical events like
in event triggered systems.

Audio computations are very often architectured as time-triggered systems. The audio
signal is sampled periodically. Because of efficiency issues, block processing12 is implemented
by grouping samples into an audio buffer of fixed size matching a definite duration of the
audio signal. Audio buffers are processed themselves periodically at an audio rate.

Duration also appears when a language offers the possibility to be woken up after some
delay. In Antescofo it can be done using the delay before an action; in ChucK by chucking the
delay to now:

// in ChucK
do someting
5.8::ms => now // advance in time
do nextthing

// in Antescofo
do something
5.8 ms // wait 5.8 milliseconds
do nextthing

So, to trigger an activity periodically, such as by filling a buffer of 64 samples at 44100 Hz
(5.8 ms), one can write:

while (true)
{

do something
5.8::ms => now

}

Loop 5.8 ms
{

do something
}

These two code snippets in ChucK and in Antescofo seem very similar but their inter-
pretations differ greatly. The ChucK program is a sequential program that is stopped for a
given duration: any code between instructions to advance time can be considered atomic (i.e.
presumed to happen instantaneously at a single point in time). The Antescofo code describes
a parallel program where some actions have to be iterated every duration (iterations are
supposed to take place independently, such that they can eventually overlap). These actions
can be atomic or have their own duration.

This example exhibits one of the differences between the approaches of ChucK and Antescofo:
ChucK takes a view where the computations happen infinitely fast and sequentially, while
Antescofo’s approach is to view computation as infinitely fast and in parallel.

12The performance benefits of block processing are due to certain compiler optimizations, instruction
pipelining, memory compaction, better cache reuse, etc.

http://chuck.cs.princeton.edu/index.html

THE MANUFACTURING OF TIME 189

This formulation seems absurd until one realizes that, here, parallelism refers to a logical
notion related to the structure of the program evaluation and is not related to the time at
which computations occur. A program is parallel if the progression of the computation is
described by several threads (and each thread correspond to a succession of actions). In
the case of ChucK, all control structures are sequential, except the explicit thread creation
operation spork. On the other hand, in Antescofo threads are implicitly derived from the
nested structure of compound actions: every actions spans new threads for their child actions
(except with the ==> and +=> continuation operators). See table below:

Implicit Threads One thread Explicit Threads
instruction counter 0 1 n

examples PureData, Antescofo C, Java,
Python

Occam, C+threads,
ChucK

thread creation implicit through data
and control

dependencies

— through explicit
operator par, spork,

fork, . . .

For example, the program

Group G
{

d\ensuremath{_1} a\ensuremath{_1}
d\ensuremath{_2} a\ensuremath{_2}
d\ensuremath{_3} a\ensuremath{_3}

}

spans the three actions ai in parallel: > (d1 a1) ‖ ((d1+d2) a2) ‖ ((d1+d2+d3) a3)
It is because of the cumalative delays that the group :::antecofo G seems a sequential

construct. But without delays, it is apparent that the actions ai are spanned in parallel.
The ChucK program that really mimics the Antescofo Loop, has to explicitly use shreds (i.e.
ChucK threads) to make the while bodies independent13:

13The dual question is the translation of the ChucK while (true) { ... } construction in Antescofo. In
Antescofo view, this construction should be avoided because it would lead to an infinite number of computations
in finite time (if the body of the while is an instantaneous action). At the end of the day, throwing away
all temporal abstractions, a computation takes finite physical time, so an infinite number of instantaneous
computations will take an unbounded quantity of physical time, violating initial assumptions. Such behavior
should be avoided. This explains why there is no while construct in Antescofo: a whileconstruct makes the
superdensetime to progress on the vertical axis, and implementability requires finite height in the superdense
time. On the other hand, a loopconstruct makes the time to progress on the horizontal axis, if the period is non
null, and this axis can be unbounded. A while (true) { ... } construct (unbounded recursion) cannot
be achieved in Antescofo using a loop with a period of zero Loop 0ms { ... } because the run-time imposes
a finite number of consecutive iterations with a period 0 if there is no explicit end clause. If this limit is reached,
the loop is aborted and an error is signaled. There is no danger from the ForAll construct: if it spans its
body in parallel, the number of spanned groups is bounded by the size of a data structure (mimicking primitive
recursion). However, there exist some means to specify an unbounded number of actions in _Antescofo, and if
these actions are all instantaneous (no delay, zero period, zero grain, etc.) it could potentially lead to an infinite
number of actions in finite time. Antescofo allows loops with zero period if an end clause is specified, so Loop
0ms { ... } while (true) will hang the execution. It is also possible to define a recursive process calling
itself before doing any others action or delays. It is also possible to specify an expression whose evaluation
would lead to infinite computations in finite time (e.g. the call to a recursive function).

/Reference/compound_group/index.html#aborting-a-group
/Reference/6-expression/index.html

190 CHAPTER 13. COMPOUND ACTIONS

fun loop_body()
{

do something
}
while (true)
{

spork ~ loop_body
5.8::ms => now

}

Loop 5.8 ms
{

do something
}

Notice a benefit of the synchrony hypothesis: synchronous programs are sequential, even
in the presence of implicit or explicit threads. So there is no need for locks, semaphores, or
other synchronization mechanisms. Actions that occur simultaneously execute sequentially
and without preemption, behaving naturally as atomic transactions with respect to variable
updates.

Supporting Event and Duration

Real-life problems dictate the handling of both events and duration: music usually involves,
in addition to audio processing, the handling of events that are asynchronous relative to DSP
computations like MIDI and OSC messages or interactions with human interface devices.

Subsuming the event-driven and the time-driven architectures is usually achieved by
embedding the event-driven view in the time-driven approach. The handling of events is
delayed and taken into account periodically, leading to several internally maintained rates,
e.g., an audio rate for audio, a control rate for messages, a refresh rate for the user-interface,
etc. This is the case for systems like Max or PureData where a distinct control rate is defined.
Notice that this control rate is typically about 1ms, which can be finer that a typical audio
rate (a buffer of 256 samples at sampling rate of 44100Hz gives an audio rate of 5.8 ms), but
the control computation can sometimes be interrupted to avoid delaying audio processing (e.g.
in Max). In Faust, events are managed at buffer boundaries, i.e. at the audio rate.

The alternative is to subsume the the two views by embedding the time-driven computation
in an event-driven architecture. After all, periodic activity can be driven by the events of
a periodic clock. Thus, the difference between waiting for the expiration of a duration and
waiting the occurrence of a logical event is that, in the former case, a time of arrival can be
precomputed.

This approach has been investigated by ChucK where the handling of audio is done at the
audio sample level. Computing the next sample is an event interleaved with the other events.
It results in tightly interleaved control over audio computation, allowing the programmer to

THE FABRIC OF TIME 191

at handle at the same time processing and higher levels of musical and interactive control14.
This approach is also the Antescofo approach15 where instants/events can be specified:

• by the performance of a musical event,

• by the reception of a message (OSC or Max/PD),

• by a duration starting from the occurrence of another event (the duration can be in
absolute time or in relative time),

• by the start of an action,

• by the end of an action,

• by the satisfaction of a logical condition when a variable is assigned.

Duration appears in the delay preceding an action, in the period of a loop and in the
sampling of a curve. Antescofo delays may be expressed in physical time (seconds, milliseconds)
or in relative time (beat).

This feature is unique to Antescofo: in other computer music languages, a duration can be
expressed in seconds, in milliseconds or even in samples, but these different units refer to the
same physical time. Relative time in Antescofo is not linked to the physical time by a simple
change of unit: it involves complex and dynamic relationships between the potential timing
expressed in the score and actual timing of the performance. The correspondance between
the two is not known a priori but builds incrementally with the passing of time during the
performance. This problem is investigated in the next section.

The Fabric of Time

Music as a Collective Performance

Antescofo tackles two fundamental problems of mixed music defined as the association in live
performance (in the context of written music) of human musicians and computer mediums
interacting in real-time:

1. music as a performance,

2. and performance as a collective process.

14It can also be argued that ChucK is a purely time-driven architecture, with a control rate equating to the
signal sampling rate. Because the corresponding duration d is very small, and used both for the audio rate and
the control rate, the distinction we made between the event-driven and the audio-driven architecture is blurred:
one can understand d as the precision of locating an event in time.

15Audio processing in Antescofo is still experimental. Sample accuracy is achieved for control values
corresponding a curve (irrespective of the [@grain] sample rate of the curve). Beyond that, our current research
work is an attempt to consolidate sample accuracy and block computations through a notion of elastic audio
buffer.

192 CHAPTER 13. COMPOUND ACTIONS

The first point refers to the divide between the score and its realization. Usually, notation
does not specify all of the elements of music precisely, which leaves welcomed space for
interpretation. The score can be thought of as a set of constraints that must be fulfilled by the
interpretation but many score’s incarnations may answer these constraints. The interpretation
matters, conveying some meaning and assigning significance to the musical material. It is the
performer’s responsibility to choose/implement one of these possible incarnations. In doing
so, the performer takes many decisions based on performance practice, musical background,
individual choices and also because he is part of an ensemble: the music is played together
with other musicians and the collective will dramatically affect the interpretation (our second
point).

These two points challenge mixed music: how should various prescriptions of rhythm, tempo,
dynamics and so on, be precisely realized within their permissible ranges by a computer?
Computers cannot make these decisions out of the blue and, furthermore, have to take the
other performers into account.

We restrict the rest of the discussion to the temporal relationships between various musical
elements (to fix the idea, think about tempo). We qualify the temporal relationships specified in
the score as potential and their realization in a performance as actual. A complete specification
of the temporal relationships can be completely fixed by the composer, that is written in the
score and definitive: the potential relationships are exactly the actual ones. For instance,
it means that the tempo of the electronic action is explicitly specified in the score and
implemented exactly during the performance. The interpretation problem is then avoided
(there is no difference between potential and actual time), but then the human performer does
not play with the machine: he or she has to follow the machine. This is no different from
playing with a prerecorded tape, whereas the whole point of mixed music is to reintroduce the
interpretation for the electronic part and to allow live interaction.

The obvious alternative is to let the composer to fix the interpretation but relatively
to the interpretation of the performer. In this way, performers and computers play
together, and there is still room for the human performer’s interpretation. The situation
is pictured below. For example, the electronic actions must follow the actual tempo of the
performer, not the potential tempo possibly specified in the score.

This approach corresponds to a big shift of paradigm in mixed music and score following:
electronic actions are not triggered on the occurrence of some musical evenst, but rather the
timeline of the electronic is aligned (synchronized) with the timeline of the performer.

Antescofo follows this approach for temporal relationships. To implement it, Antescofo
introduces several kinds of time:

• the potential time expressed in the score

• the actual time of the musical events performed on stage

• the actual time of the electronic actions implemented in real time.

and requests the composer to specify their relationships. These relationships, expressed
as synchronization strategies, are presented in the paragraph articulating time below and
discussed at length in section Synchronization Strategies.

/Reference/time_fabric/index.html#articulating-time
/Reference/time_synchro/index.html

THE FABRIC OF TIME 193

Figure 13.18: interpretation and synchronization

194 CHAPTER 13. COMPOUND ACTIONS

The Potential Score Time

The augmented score contains enough information to give a potential date to each event and
action. These dates are specified through two pieces of information: the duration of each
musical event and the tempo at each position in the score. The potential dating specified in
the score can be represented as a curve picturing the advancement of the position in the score
with respect to the passing of the physical time. See the plot below where the position in the
score is measured in beats.

Figure 13.19: timing extraction

The occurrence of a musical event, represented by a circle and a vector, is used to give
the tempo at this event. The vector represents a quantity measured in beats per second. The
knowledge of the tempo can be used to compute the advancement in the score between two
events, hence the potential date of each electronic action even if they are not synchronized
with an event. For the sake of the simplicity, we suppose that the tempo is constant between
two events16.

We call the previous map a time-time diagram because it relates the (potential) time
in the score (in beats) with the physical time (in seconds). The previous map is completely

16This property is assumed in the current version (0.9x). Future versions will consider the specification of
non piece-wise constant tempo like accelerando.

THE FABRIC OF TIME 195

defined by the set of pairs (position of event, tempo at event){
(position1, tempo1), (position2, tempo2), . . .

{
which formalizes what we called “time” in the previous paragraphs. The potential time
extracted from the score enjoys an important property:

the potential position can be computed as the integral of the potential tempo
A consequence is that the time-time diagram of potential time is a continuous curve.

The Actual Musician Time

During the performance, musicians interpret the score with precise and personal timing,
while the potential score time (in beats) is evaluated into the physical time (measurable in
seconds). For the same score, different interpretations lead to different temporal deviations,
and musician’s actual tempo can vary drastically from the nominal tempo marks. This
phenomenon depends on the individual performers and the interpretative context.

The passing of time for the performer can be observed through the production of the musical
events, so the information is restricted to the date of the occurrence these events. However,
there are several methods to estimate the current tempo from the dating of the past events.
The Antescofo approach is based on a study by Large and Jones17 but other approaches may
still be relevant. In other words, the actual time of the musical events can be defined by a set
of triples (date of event, position of event, tempo):{

(date1, position1, tempo1), (date2, position2, tempo2), . . .
{

From this information, a time-time diagram can be built to represent the passing of time for
the performer (during the performance). But such diagrams will be merely formalities. There
are indeed several ways to interpolate the positions between two events but no privileged way
to choose one against the other, because there is no observation besides the musical events.

However, the tempo estimation at a particular event can be used to forecast the arrival
of the next event18. The actual arrival may happen earlier or later than the predicted one:
So, the relation between the actual position and the actual tempo is non-newtonian: the
integration of the actual tempo gives only an approximation of the actual position.

This approximation can be seen as the result of the indetermination of the actual tempo at
any instant. We advocate that this approximation is of a more fundamental nature: there is a
divide between instantaneous discrete events (the onset of a note) and a general pace fixing the
elapsing of a duration. The latter is a global and averaged quantity which does not prohibit
the performer to advance or to postpone locally the occurrence of an event. Furthermore, the
value of the tempo cannot be checked in between events.

Articulating Time

A unique feature of Antescofo is that it explicitly considers a time reference dedicated to the
scheduling of the electronic actions. This time reference is specified by the composer and is

17E. Large and M. Jones. The dynamics of attending: How people track time-varying events. Psychological
review, 106(1):119, 1999. Other approaches may be considered.

18If an event e at position p happens at instant t with tempo T , then, the next event e′ at position p′ is
predicted to happen at instant t + p′−p

T
, i.e., we suppose that the tempo remains constant between the two

events and use a linear extrapolation.

https://web.stanford.edu/group/brainwaves/2006/large-dynamics.pdf

196 CHAPTER 13. COMPOUND ACTIONS

Figure 13.20: actual timing

dynamically computed during the performance, with respect to the potential time specified in
the score and the actual time of the performer. This time-reference corresponds to a time-time
map which is used to interpret beat positions, delays and durations involved in the actions.

This time reference is called a temporal scope. A temporal scope can be associated to
each sequence of actions. By default, a sequence of actions inherits the temporal scope of its
enclosing sequence of actions.

A temporal scope is defined by a synchronization strategy which defines how to “fill the
gap” between the actual occurrence of events. There is a whole spectrum of synchronization
strategies following the use of the information of position and the information of tempo. The
interested reader will find a patch that can be used to compare the effect of the various
synchronization strategies on a sequence of actions at this page.

At one end of the spectrum, only the tempo information is used. This synchronization
strategy is called [@loose] and illustrated below. With this strategy, the position of the
successive events are not taken into account. Only the occurrence of the event triggering the
sequence of actions is meaningful.

At the other end of the spectrum, the information of position is taken into account for each
events. The tempo is only used to interpolate the change in position between two events. This
is the [@tight] strategy. If an event happens earlier than expected, there is a jump from the
current position p to the event’s position p′. If an event happens later than expected, then the
strategy qualifier [@conservative] freezes the position from time t (the date of the expected
arrival) until the event’s arrival at t′.

One can notice that the [@loose] strategy gives a smooth evolution of position with physical
time, compared to the [@tight] synchronization strategy that may jump between position or
may froze a position. The [@tight] strategy is relevant for actions whose progression must be

http://forumnet.ircam.fr/user-groups/antescofo/forum/topic/synchronization-strategies-examples/

THE FABRIC OF TIME 197

Figure 13.21: a spectrum of synchronization strategies

Figure 13.22: loose synchronization time-time map

198 CHAPTER 13. COMPOUND ACTIONS

Figure 13.23: tight synchronization time-time map

synced with the onset of musical events. In between [@loose] and [@tight] behaviors, Antescofo
offers strategies corresponding to an actual action time that catch up more or less smoothly
with the musical events. They are all described in section synchronization strategies.

The two examples of time-time diagrams for the actual timing of actions calls for several
important remarks:

• Such a diagram can only be built in real-time, i.e. it is known only incrementally19 with
the progression of the performance.

• At an instant t, the tempo T is known because there is a method to extract the tempo
information from the past audio input20. Antescofo assumes that the current tempo is
known at each musical event and it is supposed to remain constant between events (in
absence of specific [BPM] specification in the score).

• The position can be a discontinuous and partial function of time.

• The relation between the actual position and the actual tempo is non-newtonian: the
actual position is not the integral of the actual tempo21.

19At some point in time, the change in position as time goes, is only a non-verifiable prediction until the
occurrence of an observable event which can be used to fix the position.

20E. Large and M. Jones. The dynamics of attending: How people track time-varying events. Psychological
review, 106(1):119, 1999. Other approaches may be considered.

21The last statement derives from the penultimate: the integral of a bounded quantity cannot be discontinuous.

/Reference/time_synchro/index.html
https://web.stanford.edu/group/brainwaves/2006/large-dynamics.pdf

THE FABRIC OF TIME 199

They are indeed several ways to interpolate the positions between two events but no
privileged way to choose one against the other. For instance, in the previous diagram, when
an event happens later than expected, the position is frozen from the expected date of arrival
t to the actual date of arrival t′. Another option, the [@progressive] attribute, would progress
at the tempo rate, and jump back to the expected position when the event occurs (which
means that the progression in the score is not monotonically increasing with physical time
and makes a zig-zag).

Synchronizing with an Arbitrary Time

Our discussion focused on the specification of the actual time of electronic actions, by
synchronization with a human performer. But for the Antescofo runtime, the human performer
is simply a process that produces events associated with a tempo.

Such processes can be abstracted in Antescofo with a tempovar: a tempovar is a variable
introduced with the [@tempovar] declaration. Assigning this variable corresponds to an event
and a tempo is automatically derived using the algorithm used for the human performer by
the listening module.

It is then possible to specify that a sequence of actions synchronized relatively to this
tempovar. The only difference with the synchronization with the performer is that the performer
follows an arbitrary score while a tempovar is supposed to be assigned periodically22.

A Side Note on Logical Time versus Actual Time

One conceptual advance in the field of real-time programming was the acknowledgment that
time is a denotable entity, not an operational property: real-time programming language must
include time in their domain of discourse.

As a consequence, modern programming languages that explicitly embed timing information
within the code refer to a logical time decoupled from physical time. In this way, programs
can be designed without the burden of external and operational factors, such as machine
speed, portability, and timing behavior across different systems. It is then the responsibility
of a compiler, an interpreter or a runtime to map this logical time with the physical time:
in real-time systems, logical time aims to keep up with physical time (one logical second of
logical time must take exactly one wall clock second); in non-real-time situations, logical time
may run “as fast as possible” (e.g. in offline processing).

It is tempting to compare the relationships between the potential time of the score and the
actual time of the electronics with the relationships between the logical time of a real-time
program and the physical time of its realization. This analogy is misleading. The relationship
between the potential time and the actual time of the electronic actions is not similar to the
relationship between a specification and its implementation. The difference between the logical
time expressed in a real-time program and the timing of its implementation accounts for the
details that can be neglected in the realization. On the other hand, the potential time in the
score is a partial specification. The actual time in which a sequence of actions takes place is
built by a combination of three sources of information: (1) the potential time in the score, (2)
the actual time of the musical events, and (3) the synchronization specifications given by the
composer.

22Experimental extensions are considered to remove this restriction.

/Reference/exp_tempovar/index.html
/Reference/exp_tempovar/index.html

200 CHAPTER 13. COMPOUND ACTIONS

From this point of view, Antescofo differs for all other music programming languages.
All music programming languages we know support only one logical time. Languages may
offer several time units, like seconds, milliseconds or samples. But these unit are a priori
inter-convertible (we know once and for all that 1000ms = 1s) and they refer to the same
underlying time. The time used to schedule the electronic actions in this language is the
logical time of the system.

The next section investigates the ordering of events in one instant. Then we present the
synchronization strategies in depth. Finally, the last section of this chapter consider the
handling of errors: as a matter of fact, our previous discussion neglected the fact that some
musical events specified by the score may never happen in actual time because listening
module’s errors or performer’s errors.

Action Priority

Figure 13.24: thickness of an instant

The Thickness of an instant

Each action performed by Antescofo occurs at some date and it may happen that several
actions must be performed simultaneously “in the same logical instant”. This can be a problem.
For example consider the fragment:

Group G1 { 1 $x := 0 }
Group G2 { 1 $x := 1 }
2 print $x

ACTION PRIORITY 201

The two groups are launched in parallel and they schedule two incompatible assignments to
be performed at the same date, after the expiration of a delay of one beat. The problem is to
know what will be printed when we print the value of $x? If we assume an “ordinary” parallel
execution, the outcome is not defined and the result is either 0 or 1 but not deterministically:
it varies from one execution to the other.

The synchrony hypothesis used in the development of real-time embedded systems assumes
that the actions that occur at the same date are performed in a specific and well defined order.
Antescofo fulfills the synchrony hypothesis and the purpose of this section is to explain the
execution order used to schedule actions at the same date. The rule is simple:

Two action instances that occur at the same date are ordered by their order of appearance
in the score and if they are instances of the same action, they are ordered by seniority,except*
for the body of a whenever that are performed following their causal activation order as
soon as possible*.

Achieving a deterministic execution was a major goal for Antescofo. So we describe in great
details the ordering of simultaneous actions. However, the rest of this section can be skipped
in a first reading.

Same Execution Date

A first remark is necessary: in this is section, when we speak about actions scheduled at
the same date, we refer to two actions that must be performed at the same physical date,
irrespective of their specification in the score.

Two actions that are specified at the same date in the score may well lead to two distinct
execution dates. For example, in

NOTE C4 1
Group H1 @loose
{

1 $x := 0
; ...

}
Group H2 @tight
{

1 $x := 1
; ...

}
NOTE D3 1/2

the two assignments, which occur at the same date in the potential time of the score, may
not happen at the same date during the performance because the groups H1 and H2 do not
have the same synchronization strategy:

• the assignment in H2 is performed when note D3 occurs,

• while the assignment in H1 is performed 1 beat after the occurrence of C4 (and the
conversion from beat to physical time rely on the tempo estimated at C4).

/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages

202 CHAPTER 13. COMPOUND ACTIONS

These two instants are not necessarily the same: event D3 may occur earlier or later than
the specification given in the score. Thus, the value of $x depends of “external” events (the
musical events produced on stage) even if they coincide in the score. These external events
are not deterministic and do not depend on Antescofo itself.

Conversely, two unrelated actions may, by chance, occur at the same date. For example:

NOTE E4 0.3
2 Group I1 { 3 $x := 0 }
3 Group I2 { 2 $x := 1 }

The two assignment to $x occur at the same date because the sum of the delays occurring
from the initial event (the occurrence of the musical event which triggers the actions) are
the same (2 + 3 = 3 + 2). If they are really unrelated, their execution order probably does
not matter. But there are other cases when two actions are clearly related in the score, are
scheduled for the same date, and indeed are executed at the same date. In this case, order
matters and the behavior of Antescofo must be easy to understand, deterministic and relevant.

The Syntactic Ordering of Actions

The presentation in this paragraph and the next, does not apply fully to the actions spanned
by a whenever which will be discussed below.

With the exception of whenever, the execution order followed by Antescofo is simple:
when two actions are scheduled at the same date, the syntactic order ≺ of appearance in the
program is used to determine which one is scheduled first. The syntactic order is roughly
the order of appearance in the linear score but takes into account the nesting structure of
compound actions.

More precisely, a vector of integers w(a), called the location of a, is associated with each
action a. This vector locates uniquely the action a in the syntactic structure of the score. Two
actions a and a′ scheduled at the same date are performed following the lexicographic order of
their location w(a) and w(a′).

In the next example, we write vectors by listing their element separated by a dot: 1.2.3 is
the vector with the three elements 1, 2 and 3. The location w(a) associated to an action a is
build as follows:

• Top-level actions (appearing before the first musical event or associated to a musical
event) are identified by their rank i of appearance in the score: w(a) = i.

• The ith action of a compound action G, is located at w(G).i.

The lexicographic order is best explained in an example. The localization of each action is
given on the left

1 $i := 0
2 Loop L1 1

{
2.1 print loop L1 iteration $i at $RNOW
2.2 $i := $i + 1

ACTION PRIORITY 203

}

3 $j := 0
4 Loop L2 1

{
4.1 print loop L2 iteration $j at $RNOW
4.2 $j := $j + 1

}

and the actual trace is

loop L1 iteration 0 at 0.0
loop L2 iteration 0 at 0.0
loop L1 iteration 1 at 1.0
loop L2 iteration 1 at 1.0
loop L1 iteration 2 at 2.0
loop L2 iteration 2 at 2.0
loop L1 iteration 3 at 3.0
loop L2 iteration 3 at 3.0
loop L1 iteration 4 at 4.0
loop L2 iteration 4 at 4.0

Nota Bene:

• The loop has a location which is distinct from the location of its body.

• The syntactic order does not take into account the fact that an action may have several
occurrences (this will be handled in the next paragraph).

This program exhibits several actions that occur at the same date:

• The assignment to $i and the start of the loop appears at the same date. The assignment
is performed first because 1 ≺ 2.

• For the same reason, the assignment to $i is performed before the assignment of to $j
and before the start of the loop . The start of loop is executed before the assignment to
$j, etc.

• At time n, two prints occur together but the print message in L1 is issued before the
print message in L2 because 2.1 ≺ 4.1.

A Full Temporal Address with 3 Components

The syntactic order is based solely on the syntactic structure of the score and neglects the
difference between an action and the (multiple) realizations of this action (called instances):
for example, an action a in a loop is performed at each iteration. All of these instances are
associated to the same location w(a). To compare these actions, that share the same location,
we use their instance number.

This way, the temporal address of the execution of an action a has 3 components:

204 CHAPTER 13. COMPOUND ACTIONS

(date, w(a), instance_number(a))

Temporal addresses are lexicographically ordered:

• if two actions have the same date, then their locations (given order in the score) are
used,

• and if two actions have the same date and the same location, they are compared using
their instance number (which is assigned at runtime and not by the composer).

In other words: two action instances that occur at the same date are ordered by their order
of appearance in the score and if they are instances of the same action, they are ordered by
seniority.

Relevance

The resulting order � is total: two different actions a and b are always comparable and a� b
or b� a. Thus, this order entails a deterministic execution. The order� is not necessarily the
order which is needed and there is no way to alter it in Antescofo. However, the corresponding
scheduling seems relevant on several paradigmatic examples.

For instance, a classical problem is given by two nested loops:

Figure 13.25: nested loop

$lab := 0
loop TopLoop 1
{

abort $lab

ACTION PRIORITY 205

$lab := {
Loop NestedLoop 0.1
{

$X := $X + 1
}

}
}

The loop TopLevel iterates a nested loop NestedLoop which assigns variable $X. The
command launched at iteration n of the TopLevel loop is supposed to kill the :::atescofo
NestedLoop spanned at the previous iteration to avoid two assignments of $X at the same
date. The situation is pictured at the left of the program. Remark that the expected behavior
can be achieved without an explicit abort using the [@exclusive] attribute.

Several actions share the same date:

• The 10th assignment to $X in the ith instance of NestedLoop. The temporal address
of this assignment is (i, 2.2.1.1, 10i).

• The first assignment to$X in the i+1th instance of NestedLoop. The temporal address
of this assignment is (i, 2.2.1.1, 10i+ 1).

• The abort command issued by the i iteration of TopLoop. The temporal address of
this action is (i, 2.1, 10i).

The final value of depends on the order of executions of these three instances. For example,
this result differs if the abort command is issued after the two assignments or before. Because
we have

(i, 2.1, 10i)� (i, 2.2.1.1, 10i)� (i, 2.2.1.1, 10i+ 1)

the command abort is issued first and cancel the 10th assignment. So, when ::antescofo
TopLoop is reiterated, there is only one assignment that corresponds to the first iteration of
the new NestedLoop.

Scheduling of Whenevers

Whenevers span the execution of their body when activated by variable’s assignments. Thus,
if an activation occurs at the same date as the firing of another action a, the order of the two
depends of relative order between the assignment and a: the whenever body is activated
as soon as the variable is assigned and if two whenevers are activated by the same variable,
they are activated following their syntactic order. The resulting ordering cannot be solely
deduced from the syntactic structure of the score. It is however deterministic.

Here are several examples. In the following fragment:

whenever W1 ($x > 0) { print A }
whenever W2 ($x > 2) { print B }
let $x := 3

will print

/Reference/atomic_termination/index.html

206 CHAPTER 13. COMPOUND ACTIONS

A
B

the trace produced shows that W1 is activated before W2. Indeed, the two whenevers are
activated by the same cause: the assignment to $x. In this case, the whenever are activated
following the syntactic order explained above.

In this example

whenever W1 ($x) { print A }
whenever W2 ($y)
{

print B
let $x := 1

}
whenever W3 ($x) { print C }
let $y := 1

will print

B
A
C

the activation order is W2 W1 W3 because the activation of W1 and W3 are caused by the
assignment in the body of W2: so they cannot appear before the activation of W2. Then, the
activation of W1 and W3 is done in this order, following their syntactic order.

The next example shows that the order of activation is dynamic, i.e. it may depend of the
values of the variables

whenever W1 ($x) { print A }
whenever W2 ($y) { print B }
if ($x > $y)
{

$x := $x + 1
$y := $y - 1

}
else
{

$y := $y + 1
$x := $x - 1

}

if $x > $y it will print

A
B

SYNCHRONIZATION STRATEGIES 207

else it will print

B
A

In addition, do not forget that a whenever is activated at most once in a logical instant. So
in the trace of the following fragment:

whenever W1 ($x || $y || $z)
{ print A }
whenever W2 ($x || $y)
{

print B
$z := true

}
$x := true
$y := true

will print

A
B

A and B appear only once.

Synchronization Strategies

The musician’s performance is subject to many variations from the score. There are several
ways to adapt the timing of the electronic actions to this musical indeterminacy based on the
specific musical context.

An electronic phrase is written that specifies delays between each action in a block (group,
loop, whenever, curve, etc). Through specific attributes, a particular synchronization strat-
egy defines the temporal evolution of this phrase depending on the musician’s performance.
More generally, a synchronization strategy specifies the temporal relationships between the
actual timing of a sequence of actions and the actual timing of a sequence of events, see the
previous section articulating time. The relevant synchronization strategy is determined by the
musical context and is at the composer or arranger’s discretion23.

From a synchronization perspective, the musical performance can be summarized by two
parameters: the musician’s position (in the score) and the musician’s tempo. These two
parameters are computed by the listening machine from the detection in the audio stream

23The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

/Reference/compound_whenever/index.html
/Reference/time_fabric/index.html#articulating-time
http://en.wikipedia.org/wiki/Regular_expression

208 CHAPTER 13. COMPOUND ACTIONS

of the events specified in the score. Synchronization takes them into account. The observed
position in the score, for example, can be used to fix the position in the sequence; the tempo
estimation can be used to compute the evolution of an action’s position between two events
and also to anticipate the arrival of future events.

An error handling strategy defines what to do with the action associated to an event that
is never recognized (the origin of this “non-recognition” does not matter).

Temporal Scope

The system maintains a temporal scope for each sequence of actions (groups, loops, curve,
etc). A temporal scope defines

• a local position (in beats): which represents the state of the progression when performing
the sequence of actions;

• and a local tempo (in beat per second): which represents the pace of the progression in
the sequence of actions.

The synchronization attributes associated with a compound action define the temporal
scope of the action relative to another temporal scope. By default, the referenced temporal
scope comes from the actual musician’s performance. But it is possible to specify another
using the [@tempo] attribute or using the [@sync] attribute referring to a variable introduced
by a [@tempovar] declaration.

In absence of specifications, a temporal scope is inherited from the enclosing compound
action. The sequence of actions at top-level, are implicitly synchronized with a [@loose]
synchronization strategy with the musician (cf. below).

The synchronization attributes are described below. They define how the position and
tempo in the sequence of actions depends of the musician’s position and tempo:

• [@loose] uses only the musician’s estimated tempo to synchronize the actions;

• [@tight] primarily uses the position information to synchronize the actions;

• [@target] is an intermediary between tight and loose strategies, aimed to dynamically
and locally adjust the tempo of a sequence for a smooth synchronization with anticipated
events.

When both information of tempo and information of position are used, they can be contra-
dictory (e.g., an event occurs earlier or later than anticipated from the tempo information).
Two approaches are possible following the priority given to one parameter or the other. They
are specified using the [@conservative] and [@progressive] attributes.

Finally, the synchronization mechanisms can be generalized to refer to the updates of an
arbitrary variable instead to the musical events. The attribute [@sync] and the declaration
[@tempovar] are used in this case.

Only one synchronization can be specified:

• the synchronization attributes [@sync], [@tempo], [@loose], [@tight] and [@target] are
mutually exclusive;

/Reference/time_error/index.html

SYNCHRONIZATION STRATEGIES 209

• [@progressive] is exclusive from [@conservative] but they can be combined with [@target]
and [@tight] synchronization strategies;

• [@latency] can be used to correct some latency problems, independently of the chosen
synchronization strategy;

• [@ante] and [@post] are experimental features not described here.

{!BNF_DIAGRAMS/synchro_attributes.html!}

Loose Synchronization

Once a “loose” group is launched, the scheduling of its sequence of relatively-timed actions
follows the real-time changes of the tempo from the musician. This synchronization strategy
is the default one but an explicit [@loose] attribute can be used.

The [@loose] attribute can be followed by a list of events: in this case, the change in the
musician’s tempo is considered only at these events (else they are considered on each musical
event).

{!BNF_DIAGRAMS/loose.html!}
The figure below attempts to illustrate this within a simple example: the diagram shows

the ideal performance or how actions and instrumental score is given to the system. In this
example, an accompaniment phrase is launched at the beginning of the first event from the
human performer. The accompaniment in this example is a simple group consisting of four
actions that are written parallel (and thus synchronous) to subsequent events of the performer
in the original score.

Figure 13.26: loose ideal synchronization

In a regular score following setting (i.e., correct listening module) the action group is
launched in synchrony with the onset of the first event. For the rest of the actions, however,
the synchronization strategy depends on the dynamics of the performance. This is demonstrated
in the diagram below where the performer hypothetically accelerates the consequent events in
the score.

210 CHAPTER 13. COMPOUND ACTIONS

Figure 13.27: loose synchronization when accelerando

In this diagram the performer hypothetically decelerates the consequent events in the score.

Figure 13.28: loose synchronization when rallentendo

In these two cases, the delays between the actions will grow or decrease. The tempo inferred
by the listening machine converges towards the actual tempo of the musician. Therefore, the
delays, which are relative to the inferred tempo, will also converge towards the delay between
the notes observed in the actual performance.

So, this synchronization strategy ensures a fluid evolution of the actions launching but
it does not guarantee a precise synchronization with the events played by the musician.
Although this fluid behavior is desired in certain musical configurations, there is an alternative
synchronization strategy where the electronic actions will be launched as close as possible to
the events’ detection.

SYNCHRONIZATION STRATEGIES 211

Tight Synchronization

If a group is [@tight], its actions will be dynamically analyzed to be triggered not only using
relative timing but also relative to the nearest event in the past. Here, the nearest event is
computed in the ideal timing of the score.

The [@tight] attribute without parameters considers all musical events to find the nearest
event in the past. If parameters are provided, with the syntax @tight := { label1,
label2, ... } only the musical events refered by their labels are considered.

{!BNF_DIAGRAMS/tight.html!}
Tight groups allow the composer to avoid segmenting the actions of the group into smaller

segments with regards to synchronization points and provide a high-level vision during the
compositional phase. A dynamic scheduling approach is adopted to implement the behavior.
During the execution the system synchronizes the next action to be launched with the
corresponding event.

Note that the arbitrary nesting of groups with arbitrary synchronization strategies do not
always make sense: a [@tight] group nested in a [@loose] group has no well defined triggering
event (because the starts of each action in the group are supposed to be synchronized
dynamically with the tempo). All other combinations are meaningful. To acknowledge that,
groups nested in a [@loose] group are [@loose] even if it is not enforced by the syntax.

Target Synchronization

In many interactive scenarios, the required synchronization strategy lies “in between” the
[@loose] and [@tight] strategies. Through the [@target] attribute, Antescofo provides two
mechanisms to dynamically and locally adjust the tempo of a sequence for a smooth synchro-
nization.

• static targets rely on the specification of a subset of events to take into account in the
tempo adjustment, while

• dynamic targets rely on a resynchronization window.

Static Targets

In some cases, a smooth time evolution is needed, but some specific events are temporally
meaningful and must be taken into account. For example, this is the case when two musicians
plays two phrases at the same time: they usually try to be perfectly synchronous (tight) on
some specific events while other events are less relevant. These tight events can correspond to
the beginning, or the end of a phrase or to other significant events commonly referred to as
pivot events or attractors. Antescofo lets the composer list pivot events for a given block.
During the performance, the local tempo of the block is dynamically adjusted with respect to
the actual occurrence of these pivots, cf. figures below. In the following example:

NOTE 60 2.0
group @target := {e5, e10}
{

actions ...

212 CHAPTER 13. COMPOUND ACTIONS

}
actions ...

NOTE 45 1.2 e5
actions ...

NOTE 55 1.2 e10

the local tempo of the group will be computed depending on the successive arrival estimations
of events e5 and e10. Notice that the pivots are referred to by their label and listed between
braces.

{!BNF_DIAGRAMS/static_target1.html!}
The second syntax a %% b is used to specify that the pivots are the event located at

current position + a ∗ n+ b beats (for n ∈ N).
{!BNF_DIAGRAMS/static_target2.html!}
The computed tempo aims to converge the position and tempo of the sequence of actions to

the position and tempo of the musician at the anticipated date of the next pivot. The tempo
adjustment is continuous: it follows a quadratic function of the position and the prediction is
based on the last position and tempo values notified by the listening module, cf. figure below.
This strategy is smooth and preserves the continuity of continuous curves.

Dynamic Target

Instead of declaring a priori pivots, synchronizing positions can be dynamically viewed as a
temporal horizon: the idea is that the position and tempo of the block must coincide with
the position and tempo of the musician at some date in the future. This date depends on
a parameter of the dynamic target called the temporal horizon of the target. This horizon
can be expressed in beats, seconds or number of events into the future. It corresponds to the
necessary time to converge if the difference between the musician and electronic positions is
equal to 1 beat.

{!BNF_DIAGRAMS/dynamic_target.html!}
In the following example:

NOTE 60 2.0 e1
group @target := [2s]
{

actions ...
}

the tempo and the position of the actions converge to the tempo and the position of the
musician. The convergence date is not an event (as in static target) but is fixed by the
following property: a difference of 1 between the position of the actions and the position of
the musician is corrected in 2 seconds. The syntax [2] is used to specify a horizon in beats
and [2#] to define a horizon in number of events.

A small time horizon means that the difference between the position of action and the
position of the musician must be reduced in a short time. A bigger time horizon allows for more
time to lessen the difference. Notice that the relationship between the difference in position
and the time needed to bring it to zero is not linear. As with static target synchronization,

SYNCHRONIZATION STRATEGIES 213

when a new event is detected, durations and delays are computed according to a quadratic
function of the position. The date at which (position, tempo) converges only depends on the
difference between the musician and electronic positions.

This strategy is smoother than static targets since the occurrence of events are used only to
compute the anticipated synchronization in the future.

Comparison between [@loose], [@tight] and dynamic [@target]

The figures below represent temporal evolution of an electronic phrase with several synchro-
nization strategies. The time-time diagrams show the relationship between the relative time
in beats andabsolute time in seconds24. The musical events are represented by vectors whose
slopes correspond to the tempo estimation. The actions are represented by squares and the
solid line represents the flow of time in the group enclosing these actions. From left to right and
top to bottom, the strategies represented are : [@loose], [@tight], [@target]{sync}, [@target]
[2]. There is an illustrative patch that compares the effects of synchronization attributes25.

How to Compute the Position in the Event of Conflicting Information

The [@conservative] and [@progressive] attributes parameterize the computation of the position
of the musician in the synchronization strategy. They are relevant only for the [@tight] and
[@target] strategies where both events and tempo are used to estimate the musician’s position.

• With the [@conservative] attribute, the occurrence of events is trusted more than the
tempo estimation to compute the musician’s position. So, when the anticipated date of
an event is reached, the computed position is stuck until the occurrence of this event.

• With [@progressive] attribute (the default), the estimation of the position will continue
to advance even if the forecasted event is not detected.

Several system variables are updated by the system during real-time performance to record
these various points of view in the position progression. They are used internally but the user
can access their values. Variable $NOW corresponds to the absolute date of the “current instant”
in seconds. The “current instant” is the instant at which the value of $NOW is required.

The variables $RNOW and $RCNOW are estimations of the current instant of the musician in
the score expressed in beats. At the beginning of a performance,

$NOW = $RNOW = $RCNOW

At other instants during the performance, let en be the last decoded event by the listening
machine at time NOWn, en+1 the following event, pn and pn+1 be their relative position in
beats in the score, and del be the delay in beats since the detection of en. These variable are
linked by the following equations:
del = NOW −NOWn+ $RT_TEMPO /60
where $RT_TEMPO is the last decoded tempo (in BPM) by the listening machine. Then

24Read section the fabric of time for the notion of time-time diagrams.
25The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std

1003.2, see for instance regular expression on Wikipedia.

/Reference/time_fabric/index.html
http://en.wikipedia.org/wiki/Regular_expression

214 CHAPTER 13. COMPOUND ACTIONS

Figure 13.29: synchronization comparison

SYNCHRONIZATION STRATEGIES 215

$RCNOW = pn + del $RNOW = min($RCNOW , pn+1)
Notice that the $RNOW and $RCNOW values differ when the estimated date of the next event

is exceeded: $RNOW corresponds to the conservative notion of time progression and remains at
the same value until an event is detected, whereas the variable $RCNOW corresponds to the
progressive notion of time progression and continues to grow following the tempo.

From a musical point of view, the position estimation with variables is more reliable when
an event is missed (the musician does not play the note or the listening module does not detect
it) but sometimes the value has to “go back” when the prediction is ahead.

Specifying Alternative Coordination Reference

Explicit tempo specification [@tempo]

The tempo local to a sequence of actions can be specified by an expression. This makes the
local position and the tempo of the sequence completely independent to that of the musician.
For example:

group @tempo := 70 { ... }

will execute the child actions with a tempo of 70. The tempo can be defined by an expression.
The variables of the expression are watched, much like the variable in the expression of a
whenever. When these variables are updated, the expression is reevaluated, giving a new
tempo value which is used to reevaluate on-the-fly all the pending delays

Here is an example:

Curve C1 @grain 0.05s
{ $t1 { {60} 5 {180} 5 {60} } }

Group G1 @tempo := $t1
{

@local $x
$x := 0
Loop L 0.1 {

$x := $x + 0.1
plot $NOW " " $x "\n"
}

}

The values of the variable $x in the loop are plotted in relative time at the left, and
in physical time at the right. The linear progression in relative time is transformed into a
quadratic progression made of two parabola, because the tempo variation is defined by a
piecewise linear function implemented by Curve C1 which goes from 60 to 180 and back to
60.

Synchronization on a temporal variable with [@sync]

The synchronization mechanisms of a sequence of actions with the stream of musical events
(specified in the score) has been generalized to make possible the synchronization of a sequence

216 CHAPTER 13. COMPOUND ACTIONS

Figure 13.30: tempo specification

of actions with the updates of a variable. The variable can be updated internally in the
computation specified by the score or from the external environment (for example with setvar
or with OSC messages).

Such variables are global variables introduced using the @tempovar declaration:

@tempovar $v(60, 2)

An update acts then as an event of duration 2 with a specified BPM of 60. The second
argument of the declaration defines the increase in the “position of $v” each time the variable
is updated. The first argument defines the initial “tempo” associated to this variable. This
tempo corresponds to the expected pace of the updates. The position and tempo of a tempovar
can be accessed using the dot syntax, cf. temporal variable.

The attribute [@sync] is used to specify the synchronization of a sequence of action with
the update of a variable. For instance:

Curve C
@sync := $v,
@target := [10],
@action := ...
{

$pos { {0} 5 {1} }
}

specifies that the curve C must go from 0 to 1 in 5 beats, but these beats are measured in
the time reference associated to the temporal variable $v. In addition, the relation between
the current position in the curve and the position of the musician is specified using a dynamic
target strategy.

Latency Compensation

Latency compensation is an experimental feature. When attribute @latency := 30ms is
specified for a sequence of actions, the runtime tries its best to anticipate the launch of each
action by 30 milliseconds.

/Reference/atomic_command/index.html
/Reference/atomic_osc/index.html
/Reference/exp_tempovar/index.html

MISSED EVENT ERRORS STRATEGIES 217

The anticipation is not guaranteed: it is taken on the delay preceding the actions in the
sequence. So if the first action in the sequence is launched with no delay, the 30 ms cannot be
compensated.

Missed Event Errors Strategies

Figure 13.31: fragment of a clock mechanism

Some but not all of the errors during the performance (such as events missed by the
performer, events that weren’t detected by the listening maching, or events that the listening
machine mistakenly recognizes) are handled directly by the listening modules. The critical
safety of the accompaniment part is reduced to the handling of missed events (whether missed
by the listening module or human performer):

• In some automatic accompaniment situations, one might want to dismiss associated

218 CHAPTER 13. COMPOUND ACTIONS

actions to a missed event if the scope of those actions does not bypass that of the current
event at stake.

• On the contrary, in many live electronic situations such actions might be initialized for
future actions to come.

It is the responsibility of the composer to select the right behavior by attributing relevant
scopes to accompaniment phrases and to specify, using an attribute, the corresponding handling
of missed events.

An action is said to be local if it should be dismissed in the absence of its triggering event
during live performance; and accordingly it is global if it should be launched in priority and
immediately if the system recognizes the absence of its triggering event during live performance.

Once again, the choice of an action being local or global is given to the discretion of the
composer or arranger, through the specification of the @local or @global attribute. By
default (i.e. without explicit specification), the actions at top-level are tagged @global and
error behavior are inherited from the enclosing group.

Combining Synchronization and Error Handling.

The combination of the synchronization attributes and error handling attributes for a group
of accompaniment actions gives rise to four distinct situations. Figure below attempts to
showcase these four situations for a simple hypothetical performance setup.

Each combination corresponds to a musical situation encountered in authoring of mixed
interactive pieces:

• [@local] and [@loose]: A block that is both local and loose correspond to a musical entity
with some sense of rhythmic independence with regards to synchrony to its counterpart
instrumental event, and strictly reactive to its triggering event onset (thus dismissed in
the absence of its triggering event).

• [@local] and [@tight]: Strict synchrony of inside actions whenever there’s a spatial
correspondence between events and actions in the score. However, actions within the
strict vicinity of a missing event are dismissed. This case corresponds to an ideal
concerto-like accompaniment system.

• [@global] and [@tight]:: Strict synchrony of corresponding actions and events while no
action is to be dismissed in any circumstance. This situation corresponds to a strong
musical identity that is strictly tied to the performance events.

• [@global] and [@loose]: An important musical entity with no strict timing in regards
to synchrony. Such an identity is similar to integral musical phrases that have strict
starting points with rubato type progressions (free endings).

The Antescofo behavior during an error case is shown in figure below. In this example,
the score is assumed to specify four consecutive performer events (e1 to e4) with associated
actions gathered in a group. Each action is aligned with an event in the score. The four groups
correspond to the four possible combinations of two possible synchronization strategies with
the two possible error handling attributes. This diagram illustrates the system behavior in
case event e1 is missed and the rest of events detected without tempo change. Note that e1 is

MISSED EVENT ERRORS STRATEGIES 219

detected as missed (in real-time) once of course e2 is reported. The signaling of the missing e1
is denoted by ē1.

Figure 13.32: error management

To have a good understanding of the picture notice that:

• An action (ai), associated with a delay, can be an atomic action, a group, a loop or a
curve.

• The triggers, defining when an action is fired (i.e., at an event detection, at another
action firing, at a variable update. . .), are represented with plain arrows in the figure
and detail mainly the schedule of the next action delay or the direct firing of an action.
A black arrow signals a normal triggers whereas a red arrow is for the error case (i.e., a
missed, a too late or a too early event).

Remarks:
A sequence of actions following an event in an score corresponds to a phantom group with

attributes @global and @loose. In other words, the two following scores are similar.

NOTE C3 2.0
d\ensuremath{_1} action\ensuremath{_1}
d\ensuremath{_2} group G1
{

action\ensuremath{_2}

220 CHAPTER 13. COMPOUND ACTIONS

}
NOTE D2 1.0

NOTE C3 2.0
Group @global @loose
{

d\ensuremath{_1} action\ensuremath{_1}
d\ensuremath{_2} group G1
{

action\ensuremath{_2}
}

}
NOTE D2 1.0

During a performance, even in case of errors, if an action has to be launched it is fired at a
date which is as close as possible to the date specified in the score. This explains the behavior
of a group that is [@global] and [@loose] when its event trigger is recognized as missed. In
this case, the actions that are still in the future are played at their “right” date, while the
actions that should have been triggered are launched immediately (as a tight group strategy).

In the previous example, we remark delay variations (a2 is directly fired for the @loose
@global case and not 1.0 after a1). This ’tight’ re-scheduling is important if the a2 action has
a delay of 1.10, the action should effectively be fired at 0.10 beat after a1 (next figure):

NOTE C3 1.0 e1
group G1 @global @loose
{

a\ensuremath{_1}
1.10 a\ensuremath{_2}
1.0 a\ensuremath{_3}
1.0 a\ensuremath{_4}

}

NOTE D2 1.0 e2
NOTE D2 1.0 e3
NOTE D2 1.0 e4

MISSED EVENT ERRORS STRATEGIES 221

222 CHAPTER 13. COMPOUND ACTIONS

Chapter 14

Expressions

details from the Paul Klee notebook
Expressions can be used to compute delay, period, local tempo, breakpoints in specifica-

tion, and arguments of internal commands and external messages sent to the environment.
Expressions are evaluated into values and this evaluation is supposed to take no time.

In this chapter

• we compare actions and expressions and we present the three kind of expressions that
exist in Antescofo;

• we introduce the general notion of a value (each specific kind of value will be discussed
at length in the following chapters);

• we detail the notion of a variable;

• we explain the use of variables to define a dynamic tempo (a tempo that evolves in
time);

• we present the conditional expressions;

• and finally we explain how to get the exe value associated to each running compound
action.

Expressions versus Actions

Actions and expressions belongs to two clearly separated worlds in Antescofo:

• Expressions appear as parameters of actions and the evaluation of expressions is subor-
dinated to the execution of actions.

• The evaluation of an expression does not last over time, thus the evaluation process can
be more efficient than the execution of actions1.

1For instance, the implementation of a Group implies a state to maintain an environment accessible by
the group’s childs, it requires a scheduler to manage the delay, additional computation for the management
of synchronization and the translation of relative delays into physical time, etc. Even if a compound action
performs instantaneously, its execution is a little more costly than its corresponding expression.

223

http://www.kleegestaltungslehre.zpk.org/
/Reference/exp_value/index.html
/Reference/compound_group/index.html

224 CHAPTER 14. EXPRESSIONS

Figure 14.1: details from the Paul Klee notebook

EXPRESSIONS VERSUS ACTIONS 225

This separation may appear sometimes somewhat artificial. For example, the assignment
of a variable is an action (because it can trigger activities or alter synchronization or tempo
information) but some variables are only introduced to store intermediate values in the
computation of a complex expression. The Loop construct is an action but it is useful to
implement iterative expressions. A process definition is a value (of type proc) and a handle to
the current execution of a compound action is also a value (an exec). Etc.

To make the boundary between the two worlds more permeable, and to take into account
the usual syntax of Max or PD message (they have no delimeters between arguments and the
end of line is used as terminator), the Antescofo syntax distinguishes between three kinds
of expressions. This distinction is only useful for syntactic reasons: they are not allowed to
appear anywhere to make the parsing non-ambiguous but expressions “have the same rights”
and are managed in the same way, irrespectively of their kind.

Three Kinds of Expressions

Expressions are categorized in three kinds of increasing generality, each including the previous
one:

• Closed expressions2 are best called auto-delimited expressions. These expressions are
allowed in the specification of a delay, a breakpoint in a curve, the value of an attribute,
etc. See section auto-delimited expressions below.

• Simple expressions are the usual expressions allowed anywhere else, for example in the
right hand side of an assignment, as the argument of a function or process call, etc.

• Extended expressions are the expressions allowed in the body of a function. They enrich
simple expressions with assignments, messages and instantaneous loops.

We stress again that these three categories exist only to make the parsing of an augmented
score non-ambiguous. Expressions have the same status and are managed in the same way,
irrespective of their category. So it is possible to turn an expression of a more general category
into an equivalent expression of a less general one:

• an extended expression can be used in place of a simple expression, simply by calling a
function whose body is specified by the extended expression (a function call is a simple
expression).

• a simple expression can be used where a closed expression is expected, simply by putting
it between parentheses.

Auto-Delimited Expressions

Closed expressions, also called auto-delimited expressions, are expressions that are allowed in
specific locations:

• the specification of a delay,

2The term closed expression usually refers to an expression that contains no free variables. This is not
the meaning used here. A closed expressions refer here to expressions that can be put in sequence without
ambiguity. See paragraph auto-delimited expressions.

/Reference/compound_loop/index.html
/Reference/7-scalar/index.html#proc-values
/Reference/7-scalar/index.html#exec-value
/Reference/6-expression/index.html#auto-delimited-expressions
/Reference/6-expression/index.html#auto-delimited-expressions
/Reference/6-expression/index.html#simple-expressions
/Reference/9-functions/index.html#extended-expressions
/Reference/action_ref/index.html#delays
/Reference/6-expression/index.html#auto-delimited-expressions

226 CHAPTER 14. EXPRESSIONS

Figure 14.2: three kinds of expressions

• the arguments of a message,

• the arguments of an internal command,

• the list of breakpoints in a curve,

• the specification of an attribute value,

• the specification of a while or until clause.

If a simple or an extended expression is provided where an auto-delimited expression is
required, a syntax error is declared.

Numeric constants and strings are closed expressions, as well as map definitions. Tab
definitions are closed expressions but the keyword TAB is mandatory. A variable is a closed
expression too.

Notice that every expression between parentheses is an auto-delimited expression. So, a
rule of thumb is to put the expressions in the contexts listed above between braces when the
expression is more complex than a scalar constant or a variable.

The section syntax of auto-delimited expressions gives the full syntax of closed expressions
and explains the motivations of these syntactic constraints.

Simple Expressions

Simple expressions include:

• closed and arithmetic expressions

• variables and constant values

• data structure definitions (tab, map, nim)

/Reference/atomic_messages/index.html
/Reference/atomic_command/index.html
/Reference/compound_curve/index.html
/Reference/action_ref/index.html#action-attributes
/Reference/compound_group/index.html#the-until-clause
/Reference/compound_group/index.html#the-until-clause

VALUES 227

• function applications and process calls

• variable manipulation

and a combination thereof. A simple expression between parentheses is a closed expression
(and a simple expression).

The grammar of simple expressions is defined in simple expression grammar.

Extended Expressions

Writing large expressions can be cumbersome and may involve the repetition of common
sub-expressions. Functions can be used to avoid the repeated evaluations of common sub-
expressions. In addition, the body of a function is an extended expression, which is a sequence
of simple expressions enriched with local variables, messages, assignments and loops.

Extended expressions enable a more concise and more readable specification of expressions.
See chapter Functions.

Next, we introduce the general notion of value.
You may also go directly to:

• the notion of variable;

• temporal variables;

• conditional expressions;

• actions as expressions.

Values

Expressions are evaluated into values at run-time (or live performance). There are two kinds
of values:

• scalar or atomic values, described in chapter Scalar Value, include the undefined value,
booleans, integers, floats (IEEE double), symbols, function definitions, process definitions
and running processes (exec);

• data structures or compound values like strings (sequences of characters), tabs
(tables, vectors), maps (dictionaries), and interpolated functions NIMs. Such data
structures, described in chapter Data Structures, can be arbitrarily nested, to obtain for
example a dictionary linking strings with vectors of interpolated functions.

A compound value is referred to using a handle (or pointer). So, the same compound
value can be shared between variables or shared between nested data structures (see data
structure).

/Reference/9-functions/index.html
/Reference/7-scalar/index.html
/Reference/data-string/index.html
/Reference/data-tab/index.html
/yet-to-be-written.html
/Reference/data-nim/index.html
/Reference/8-data/index.html
/Reference/8-data/index.html
/Reference/8-data/index.html

228 CHAPTER 14. EXPRESSIONS

This is important because a compound value v is a mutable data structure: you can
change an element in the data structure and this does not change the value itself. It means
that the variables referring to the value v will refer to the changed data structure. On the
contrary, atomic values are immutable: you cannot change an atomic value, you can only
build a new atomic value.

Functions can be used to combine values and build new ones. The programmer can define his
or her own functions (see chapter Function), also having access to a large predefined Functions
Library. The figure below shows a simple score excerpt employing a simple expression and
value. The text score on the right declares four expressions to be sent to receivers “hr1-p”
to “hr4-p” (harmonisers) whose final value is being converted from semi-tones to pitch-scale
factor. This graphical representation shows their evaluation.

Figure 14.3: principe

In this example we are able to use the final values of the expression in the graphical display
of the score by AscoGraph since the arguments of the expression are constant. So these
expressions are recognized itself as constant and their value is computed when the score is
loaded (a mechanism known as “constant propagation”). If a variable were to be used, the
expression would stay intact in the visual representation to be evaluated at run-time. Variables
will be discussed in section Variable.

Dynamic Typing

From a programming language perspective, Antescofo is a dynamically typed programming
language: value types in Antescofo do not need to be explicitly specified; the type of values
are checked during the performance and this can lead to an error at run-time.

When a wrong argument is provided to an operator or a predefined function, an error
message is issued on the console and the returned value depends of the operators involved
(often, the undef value). See section Dealing with Errors for useful hints on how to debug an
augmented score.

Compound values are not necessarily homogeneous : for example, the first element of a
vector (tab) can be an integer, the second a string and the third a boolean.

Note that each kind of value can be interpreted as a boolean or as a string. The string
representation of a value is the string corresponding to an Antescofo program fragment that

/Reference/9-functions/index.html
/Library/Functions/00intro/index.html
/Library/Functions/00intro/index.html
http://forumnet.ircam.fr/user-groups/ascograph/index.html
/Reference/exp_variable/index.html
/UserGuide/workflow_rehearsal/index.html#dealing-with-errors

VALUES 229

can be used to denote this value.

Checking the Type of a Value

Several predicates check if a value is of some type:

• [@is_undef]

• [@is_bool]

• [@is_string]

• [@is_int]

• [@is_float]

• [@is_numeric] (which returns true if the argument is either [@is_int] or [@is_float]),

• [@is_map]

• [@is_nim]

• [@is_tab]

• [@is_fct] (which returns true if the argument is an intentional function)

• [@is_function] (which returns true if the argument is either an intentional function or a
map)

• [@is_proc]

• [@is_exec]

• [@is_obj]

• [@is_obj_xxx] (where xxx is the name of an object definition).

Value Comparison

Two values can always be compared using the relational operators

< <= = != => >

and the @min and @max operators.
The comparison of two values of the same type is as expected: arithmetic comparison for

integers and floats, lexicographic comparison for strings, etc. When an integer is compared
against a float, the integer is first converted into the corresponding float. Otherwise, comparing
two values of two different types is well defined but implementation dependent.

/yet-to-be-written.html

230 CHAPTER 14. EXPRESSIONS

The various kind of values are reviewed in chapters Scalar Values and Data Structures.
Antescofo is a high-order language, so Functions and Processes are also values, as well as
Actors.

In the rest of this chapter, we review:

• the notion of variable;

• temporal variables;

• conditional expressions;

• actions as expressions.

Variables

Antescofo variables are imperative variables: they are like a box that holds a value. The
assignment of a variable consists of changing the value stored in the box:

$v := expr
let $v := expr

The two forms are equivalent, but the let keyword is sometimes mandatory, see below.
An assignment is an action and like other actions, it can be done after a delay. We stress

that variable assignments are actions and not expressions. However, they are instantaneous
and they can appear in extended expressions in the body of a function.

Variables are named with a $-identifier. By default, a variable is global - that is, it can be
referred to in an expression anywhere in a score.

Note that variables are not typed: the same variable may hold and integer and later a
string, for example.

User variables are assigned within an augmented score using Assignment Actions, see
assignment. However, they can also be assigned by the external environment, using a dedicated
API:

• the reception of an OSC message,

• the message setvar or the internal command antescofo::setvar,

• the function [@loadvar].

Also see the section accessing scoped variable below.

Histories: Accessing the Past Values of a Variable

Variables are managed in an imperative manner. The assignment of a variable is seen as
an internal event that occurs at some date. Such event is associated to a logical instant.
Each variable has a time-stamped history. So, the value of a variable at a given date can be
recovered from the history, achieving the notion of stream of values. Thus, $v corresponds
to the last value (or the current value) of the stream. It is possible to access the value of a
variable at some date in the past using the dated access:

/Reference/7-scalar/index.html
/Reference/8-data/index.html
/Reference/9-functions/index.html
/Reference/10-process/index.html
/Reference/actors/index.html
/Reference/atomic_assignation/index.html
/Reference/atomic_assignation/index.html
/Reference/atomic_osc/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/exp_variable/index.html#accessing-a-local-variable-from-outside-its-scope-of-definition

VARIABLES 231

[date]:$v

returns the value of variable $v at date date. The date can be expressed in three different
ways:

• as an update count: for instance, expression [2#]:$v returns then antepenultimate
value of the stream;

• as an absolute date: expression [3s]:$v returns the value of $v three seconds ago;

• and as a relative date: expression [2.5]:$v returns the value of $v 2.5 beats ago.

For each variable, the programmer may specify the size n of its history variable declaration.
So, only the n “last values” of the variable are recorded. Accessing the value of a variable
beyond the recorded values returns an undefined value.

Dates functions

Two functions let the composer to know the date of a logical instant associated to the
assignment of a variable:

@date([n#]:$v)

returns the date in absolute time of the nth to the last assignement of and

@rdate([n#]:$v)

returns the date in relative time (relative to the musician).
These forms mimic the form of functions but they are not; they are special forms and

only accept a variable or the dated access to a variable.

Variable Declaration

Variables are global by default, that is, visible everywhere in the score, or they are declared
local to a sequence of actions which limits its scope and puts a constraint on its lifetime.

For instance, the scope of a variable declared local in a loop body is restricted to one
instance of the loop body, so two loop bodies refer to two different instances of the local
variable. This is also the case for the body of a whenever or of a process.

Local Variables

To make a variable local to a scope, it must be explicitly declared using a [@local] declaration.
A scope is introduced for the body of each compound action. The declaration, may appear
everywhere in the scope and takes a comma separated list of variables:

@local $a, $i, $j, $k

/Reference/exp_variable/index.html#variables-declaration
/Reference/compound_whenever/index.html
/Reference/10-process/index.html
/Reference/4-compound/index.html

232 CHAPTER 14. EXPRESSIONS

There can be several declarations in the same scope and all local variables can be accessed
from the beginning of the scope, regardless of the location of their declaration.

A local variable may hide a global variable and there is no warning if it does. A local
variable can be accessed only within its scope. For instance

$x := 1
group {

@local $x
$x := 2
print "local var $x: " $x

}
print "global var $x: " $x

will print

local var $x: 2
global var $x: 1

Lifetime of a Variable

A local variable can be referred as soon as its nearest enclosing scope is started but it can
persist beyond the enclosing scope lifetime. For instance, consider this example :

Group G
{

@local $x
2 Loop L

{
... $x ...

}
}

The loop ::antescofo L nested in the group runs forever and accesses the local variable
after “the end” of the group G (the group ends whith the launch of its last action, see Action
Sequence). This use of $x is perfectly legal. Antescofo manages variables efficiently and the
memory allocated for $x persists as long as needed by the children of G but no more.

History Length of a Variable

For each variable, Antescofo only records a history of limited size. This size is predetermined,
when the score is loaded, as the maximum of the history sizes that appears statically in
expressions and in variable declarations.

In a declaration, the specification of a history size for the variable takes the form:

n:$v

VARIABLES 233

where n is an integer. This syntax specifies that variable has an history of length at least n.
To make it possible to specify the size of global variable’s history, there is a declaration

[@global]

@global $x, 100:$y

similar to the declaration [@local]. Global variable declarations may appear anywhere
an action may appear. Variables are global by default, thus, the sole purpose of a global
declaration, beside documentation, is to specify history lengths.

The occurence of a variable in an expression is also used to determine the length of its
history. In an expression, the nth past value of a variable $v is accessed using the dated access
construction (see above):

[n#]:$v

When n is a constant integer, the length of the history is assumed to be at least n.
When there is no declaration and no dated access with constant integers, the history size

has an implementation dependant default size.
The special form @history_length($x) returns the length of the history of the variable

$x.

History reflected in a Map or in a Tab

The history of a variable may be accessed also through a map or a tab. Three special functions
are used to build a map (resp. a tab) from the history of a variable:

• @map_history($x) returns a map where key n refers to the n− 1 to the last value
of $x. In other word, the element associated to 1 in the map is the current value, the
previous value is associated to element 2, etc. The size of this list is the size of the
variable history, see the paragraph History Length of a Variable below. However, if the
number of updates to the variable is less than the history length, the corresponding
undefined values are not recorded in the map.

• @tab_history($x) is similar to the previous function but returns a tab where ith
element refers to the the n− 1 to the last value of $x.

• @map_history_date($x) returns a map where the value of key n is the date (physical
time) of the n− 1 to the last update of $x. The previous remark on the map size applies
here too.

• @tab_history_date($x) builds a tab (instead of a map) of the dates in physical
time of the of updates of the var $x.

• @map_history_rdate($x) returns a map where the value associated to key n is the
relative date of n− 1 to the last update of $x. The previous remark on the map size
applies here too.

• @tab_history_rdate($x) builds a tab (instead of a map) of the dates in relative
time of the updates of the var $x.

234 CHAPTER 14. EXPRESSIONS

These six functions are special forms: they only accept a variable as an argument. These
functions build a snapshot of the history at the time they are called. Later, the same call will
eventually build different maps and tabs. Beware that the history of a variable is managed as
a ring buffer: when the buffer is full, any new update takes the place of the oldest value.

Plotting the history of a variable

The history of a variable can be plotted in absolute or in relative time using the command
[@plot] and [@rplot]. These two functions are special forms accepting only a list of variables
as arguments. They return true if the plot succeeded and false elsewhere.

If there is only one argument $x , the referred values can be a tab (of numeric values) and
each element in the history of the tab is plotted as a time series on the same window. If they
are more than one argument, each variable must refer to a numeric value and the time series
of the variables values are plotted on the same window.

Note that only the values stored in the history are plotted : so usually one has to specify
the length of the history to record, using a [@global] or [@local] declaration.

The @plot and @rplot special forms expand to a call to the function gnuplot3. For
example, the expression expands into

@gnuplot("$x", @history_tab_date($x), @history_tab($x),
"$y", @history_tab_date($y), @history_tab($y))

See description of [@gnuplot] in Library Functions.

Accessing a Local Variable “From Outside its Scope of Definition”

A local variable can be accessed in its scope of definition, or from one of its child scopes,
using its identifier. It is possible to access the variable from “outside its scope” using the dot
notation through an exec. Here, “outside” means “not in the scope of definition nor in one of
its children”. Beware that accessing a local variable from outside its definition scope:

• is correct only within the lifetime of the variable,

• does not extend the lifetime of the variable which is still bound to the lifetime of its
definition scope and its children.

If the scope of definition of the variable is not alive at the time of the access, an undefined
value is returned and an error is signaled. Else, if there is no variable with this identifier
locally defined in the scope, then the variable is looked up in the enclosing scope. The process
is iterated until the top-level is reached. At this point, if there is no global variable with the
specified identifier, an undefined value is returned and an error is signaled.

3The gnuplot program is a portable command-line driven graphing utility for Linux, MS Windows, Mac
OSX, and many other platforms. Cf. www.gnuplot.info. It must be installed on the system to have a working
[@gnuplot] function.

/Library/Functions/00intro/index.html
http://www.gnuplot.info

VARIABLES 235

The Dot Notation

To access the variable defined in one specific instance of a group, or more generally of a
compound action introducing a scope ([@whenever], loop, process call, etc.), one must use the
dot notation through the exec referring to this instance. Exec are introduced in section Exec.

It is possible to read the value of a local variable through the dot notation:

$p := ::P()
$x_of_p := $p.$x

Expression $p.$x get the value of the local variable $x in the process ::P launched at
the previous line. The instance of the process is accessed trough its exec, see section Exe.

The expression at the left of the dot operator may be more complex than just a variable:

$p := [::P() | (10)]
$x_of_p2 := $p[2].$x

The first line launch 10 instances of process ::P using a tab comprehension. The second
line get the local variable of the third instance of ::P.

Assigning a Variable From Outside its Scope

As previously mentionned, a variable can be assigned from “outside”, see:

• the reception of an OSC message OSCreceive,

• the message setvar,

• the function [@loadvar],

• the assignment using the dot notation.

The OSCreceive and the setvar command can be used only for global variable. But local
variable can be the target of the two other mechanisms.

The assignment of a local variable through the dot notation is similar to an usual assignment:

$p := ::P()
let $p.$x := 33 // assign the local variable $x in the process ::P

The expression at the left of the dot operator may be more complex than just a variable:

$p := [::P() | (10)]
let $p[2].$x := 33

The first line launches 10 instances of process :::atescofo ::P. The second line sets
the local variable of the third instance of :::atescofo ::P.

Notice the let keyword: it is needed in an assignment when the expression in the left hand
side of the assignment is more complex than a variable.

These assignments are monitored by the whenever where the local variable $x appears. But
an expression $p.$x does not monitor the local variable of the process. See section Reference
to a scoped variable

/Reference/compound_loop/index.html
/Reference/7-scalar/index.html#exec-value
/Reference/7-scalar/index.html#exec-value
/Reference/data-tab/index.html#tab-comprehension
/Reference/atomic_osc/index.html#oscreceive
/Reference/atomic_command/index.html
/Reference/atomic_osc/index.html#oscreceive
/Reference/atomic_command/index.html
/Reference/compound_whenever/index.html

236 CHAPTER 14. EXPRESSIONS

Antescofo System Variables

System variables are internal variables managed directly by Antescofo and are updated
automatically by the system. They are useful for interacting with, for example, the machine
listener during performances and creating interactive setups.

The following variables are managed as ordinary variables:

• $BEAT_POS is the position of the last detected event in the score.

• $DURATION is the duration of the last detected event, as specified in the score.

• $ENERGY is the current normalized energy of the audio signal from the listening machine.
The returned value is always between 0.0 and 1.0 and is equivalent to the Calibration
Output of the Antescofo object in Max and Pd. NOTE: The variable is updated with
high frequency (equal to the analysis hop size). Use it with care inside processes and
Whenever constructs.

• $LAST_EVENT_LABEL is the label of the last event seen. This variable is updated only
if the event has a label.

• $PITCH is the pitch (in MIDI Cents) of the current event. This value is well defined in
the case of a NOTE and is not meaningful for the other kinds of event.

• $RT_TEMPO represents the tempo currently inferred by the listening machine from the
input audio stream.

• $SCORE_TEMPO returns the tempo constant in the score at the exact score position
where it is called.

• $RCNOW is the date in relative time (in beats) of the “current instant”. It can be
interpreted as the current position in the score. This position is continuously updated
between the occurence of two events as specified by the current tempo. Thus, if the next
event occurs later than anticipated, the value of $RCNOWwill jump backward.

• $RNOW is the date in relative time (in beats) of the “current instant”. It can be interpreted
as the current position in the score. This position is continuously updated between two
events as specified by the current tempo. But, contrary to $RCNOW, the increase stops
when the position in the score of the next waited event is reached and RNOW is stuck
until the occurrence of this event or the detection of a subsequent event (making this
one missed). Thus, cannot decrease.

Note that when an event occurs, several system variables are likely to change simultaneously.
Notice that, as for all variables, they are case-sensitive.

Special Variables

These variables are similar to system variables, but they cannot be watched by a whenever:

• $NOW corresponds to the absolute date of the “current instant” in seconds. The “current
instant” is the instant at which the value of is required.

/Reference/compound_whenever/index.html

TEMPORAL VARIABLES 237

• $MYSELF denotes the exec of the enclosing compound action.

• $THISOBJ may appears in method definitions where it refers to the object on which the
method is applied, or in the clauses of an object definition where it refers to the current
instance.

Variables and Notifications

In Antescofo, a set of entities to be notified is associated to each variable. The notification
mechanism is the core device used by the reactive engine to implement the computations.

Notification of events from the machine listening module drops down to the more general
case of variable-change notification from an external environment. Actions associated to a
musical event are notified through the variable $BEAT_POS. This is also the case for the
group, loop and curve constructions which need the current position in the score to launch
their actions with @loose synchronization strategy. The whenever construction is notified
by all the variables that appear in its condition. The scheduler must also be globally notified
upon any update of the tempo computed by the listening module and on the update of
variables appearing in the local tempi expressions.

Temporal Shortcuts. The notification of a variable change may trigger a computation
that may end, directly or indirectly, in the assignment of the same variable. This is known
as a “temporal shortcut” or a “non causal” computation. The reactive engine takes care of
stopping the propagation when a cycle is detected. See section Causal Score and Temporal
Shortcuts.

The next section temporal variables investigates the use of a variable to track a process
and to infer a tempo. Then we take a look at

• conditional expressions

• and actions as expressions.

Temporal Variables

Starting version 0.8, Antescofo provides a feature to track the progression of any kind of
performance P through the updates to a variable. The variable is used to infer the tempo
of P and any sequence of actions can be synchronized with it, the same way a sequence of
actions can be synchronized with the musician.

Such variables are called temporal variables. They abstract the “position” and the
“speed” of P: each time P progress, it updates the associated variable, which corresponds to a
predefined progression in the position of P. The “tempo of the variable” is computed using
the same algorithm used by the listening machine to track the tempo of the musician.

Temporal variables are declared using the @tempovar declaration:

@tempovar $v(60, 1/2), $w(45, 1)

/Reference/compound_whenever/index.html#causal-score-and-temporal-shortcuts
/Reference/compound_whenever/index.html#causal-score-and-temporal-shortcuts

238 CHAPTER 14. EXPRESSIONS

defines two variables $v and $w. Variable $v has an initial tempo of 60 BPM and periodic
updates of 1/2 beats, whereas $w has an initial tempo of 45 BPM and expected periodic
updates of 1.0 beat.

Temporal variables are regular variables that can be used in expressions. The value of a
temporal variable is the last assigned value or undefined (as for an ordinary variable). In
addition, a temporal variable stores the following internal information that can be accessed at
any time:

• $v.tempo represents the internal tempo of $v as tracked by Large’s algorithm. This
attribute is initialized by the first parameter of the @tempovar declaration.

• $v.position represents current beat position of $v. This attribute is initialized to 0.

• $v.frequency represents frequency (period) of $v. This attribute is initialized by the
inverse of the second parameter of the @tempovar declaration.

• $v.rnow represents relative time of $v

Such internal attributes can be changed at any time like regular variables. For example:

let $v.tempo := 55 // change the current tempo of $v

The @sync synchronization attribute

Using temporal variables, it is possible to define synchronization strategies of groups, loops,
proc, etc., based on the progression recorded by a temporal variable, using the attribute
@sync as below:

group
@sync $v
@target[5s]
{

; actions...
}

Temporal variables can be set by the environment, cf. setvar, allowing for easy tracking
any kind of external processes and the synchronization on it. Temporal variables can also be
used to set synchronization coordination schemes different than that of the human musician it
follows.

Comparing score following and temporal variables

The table below compares the features offered by the score following (listening machine) and
temporal variables:

/Reference/atomic_command/index.html

OPERATORS AND PREDEFINED FUNCTIONS 239

features score following temporal variable $v
event musical event

detected by the
listening machine

update of $v

elementary
progression

an amount
corresponding to the

duration of the
detected event

a fixed amount specified in the @tempovar
declaration

position of
last event

$BEAT_POS $v.position

current
position

$RNOW $v.RNOW

progression
speed

$RT_TEMPO $v.tempo

progression
speed

estimation by

Large’s algorithm Large’s algorithm

position is
updatable

NO YES

progression
speed is

updatable

NO YES

Nota Bene:

• The value assigned to a temporal variable does not matter in the synchronization
mechanism, nor in the position and progression speed tracking.

• Unlike a score, each event (update) of a temporal variable corresponds to a progression
of the same quantity.

• Contrary to score following, the tracking parameter can be updated directly, directly
impacting the progression of the sequence of actions synchronized with it.

Operators and Predefined Functions

The main operators and predefined functions are outlined in the following chapters together
with the main data types involved. Here we sketch some operators and functions that are not
linked to a specific type. The predefined functions are listed in annex Library.

Conditional Expression

An important operator is the conditional à la C :

(cond ? exp\ensuremath{_1} : exp\ensuremath{_2})

/Library/Functions/00intro/index.html

240 CHAPTER 14. EXPRESSIONS

returns the value of the expression exp1 if the expression cond evaluates to true and else
exp2. The parentheses are mandatory.

As usual, the conditional operator is a special function: it does not evaluate all of its
arguments. If cond is true, only exp1 is evaluated, and similarly for false and exp2.

In the body of a function, a conditional can be written using the usual syntax:

if (cond) { exp\ensuremath{_1} } else { exp\ensuremath{_2} }

see chapter Functions.
Beware not to confuse the conditional action and the conditionnal expression presented

here. The body of the former is a sequence of actions; the latter, an expression. The former
does not return a value, contrary to the latter.

@empty and @size

The predicate [@empty] returns true if its argument is an empty map, tab or string, and false
otherwise.

Function [@size] accepts any kind of argument and returns:

• for aggregate values, the “size” of the arguments; that is, for a map, the number of
entries in the dictionary, for a tab the number of elements, for a nim, the dimension of
the nim and for a string the number of characters in the string.

• for scalar values, [@size] returns a strictly negative number. This negative number
depends only on the type of the argument, not on the value of the argument.

Alphabetical Listing of Antescofo Predefined Functions

{!Library/Functions/functions.list!}

Actions as Expressions

An action can be considered as an expression: when evaluated, its value is an exec. This
can be a useful way to bypass Antescofo’s syntax constraints. To consider an action as an
expression, the action must usually be enclosed in an EXPR { ... } construct.

However, the main use of this construct is to get the exec of an action. The action is fired
when the expression is evaluated. The returned exec refers to the running instance of the
action and can be used to kill this running instance or to access the local variables of the
action. An atomic action (with a 0-duration run) returns the special exec '0.

Simplified Syntax

A number of shortcuts can be used to simplify the writing:
The surrounding EXPR { ... } is optional in the case of a process call.

/Reference/9-functions/index.html
/Reference/compound_if/index.html
/yet-to-be-written.html
/Reference/data-tab/index.html
/Reference/data-string/index.html
/yet-to-be-written.html
/Reference/data-tab/index.html
/Reference/data-nim/index.html
/Reference/data-string/index.html
/Reference/7-scalar/index.html#exec-value

SCALAR VALUES 241

The surrounding EXPR { ... } is optional in the body of a function, but only for
messages and variable assignment, see AtomicActionInExpression.

The keyword EXPR is optional in the right hand side of an assignment. For example:

$x := EXPR { whenever (...) {...} }

is equivalent to

$x := { whenever (...) {...} }

Example

In the following example, a tab of 5 elements is created. Each element refers to a running loop:

$tab := [EXPR{ Loop 1 { @local $u ... } } | (5)]

Thus, one can kill the second instance with

abort $tab[1]

and one can access the local variable of the third instance through the dot notation:

$uu := $x[2].$u

In this case, the use of the EXPR { ... } avoids the definition of a process to encapsulate
the loop.

Scalar Values

Antescofo offers a rich set of value types described in this chapter and those that follow. The
value types examined in this chapter - undef(the undefined value), bool (booleans), int
(integers), float (double floating point values), fct (intensional functions), proc (processes)
and exec (threads of execution) - are indecomposable values. Functions and processes are
also covered in more depth respectively in chapters Function and Process. The value types
examined in the next chapter are data structures that act as containers for other values.

The Undefined Value

There is only one value of type undef. This value is written

<undef>

This value is the value of a variable before any assignment. It is interpreted as the value
false if needed.

The undefined value is used in several other circumstances, for example as a return value
for some exceptional cases in some predefined functions.

/Reference/9-functions/index.html#extended-expressions
/Reference/9-functions/index.html
/Reference/10-process/index.html

242 CHAPTER 14. EXPRESSIONS

Boolean Values

There are two boolean values denoted by the two symbols true and false. Boolean values
can be combined with the usual operators:

• the logical negation ! (“not”) written prefix form4: for instance, ! false returns
true;

• the logical disjunction || (“or”) written in infix form: e.g., $a || $b;

• the logical conjunction && (“and”) written in infix form: for example, $a && $b .

Logical conjunction and disjunction are lazy: a && b does not evaluate b if a is false
and a || b does not evaluate b if a is true.

Integer Values

Integer values are written as expected. The arithmetic operators +, -, *, /, and % (modulo),
are the usual ones with the usual priority.

Integers and float values can be mixed in arithmetic operations and the usual conversions
apply. Similarly for the relational operators <, <=, == (equal), != (not equal), >=, and >:
when an integer is compared against a float, it is first converted into the equivalent float.

In the context of a boolean expression, a zero is the false value and all other integers are
considered to be true.

Float Values

As in the C language, Float (“floating point”) values, a data type that can store a long decimal
number, are handled as IEEE doubles. The arithmetic operators, their priority and the usual
conversions apply. Beware that two floats may be printed in the same way but may differs
from a very small amount.

Float values can be implicitly converted into a boolean, using the same rule as that of
integers.

For the moment, there is only a limited set of predefined {!Library/Functions/math_functions.list!}
.

These functions correspond to the usual IEEE mathematical functions. They also accept
integers.

User-defined Functions

An intentional function is a value that can be applied to arguments to achieve a function call.
Like others kinds of values, it can be assigned to a variable or passed as an argument in a
function or a procedure call.

Intentional functions f are defined by rules (i.e. by an expression) that specify how an
image f(x) is associated to an element x. Intentional functions can be defined and associated

4The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

http://en.wikipedia.org/wiki/Regular_expression

SCALAR VALUES 243

to an @-identifier using the construct introduced in chapter Functions. In an expression, the
@-identifier of a function denotes the corresponding functional value. This value can be used
for instance as an argument of higher-order functions (see examples of higher-order predefined
function in section map for map building and map transformations).

Looking at functions as values is customary in functional languages like Lisp or ML. However,
contrary to these functional languages, functions in Antescofo cannot be defined in a nested
way, only from the top level like in C.

Some intentional functions are predefined and available in the initial environment like the
IEEE mathematical functions. See annex Library for a description of predefined functions.

There is no difference between predefined intentional functions and user’s defined intentional
functions except for those in a Boolean expression, where a user’s defined intentional function
is evaluated to true and a predefined intentional function is evaluated to false. See also
the predicates [@is_fct] and [@is_function].

Intentional functions are described more in detail in chapter Functions.
Intentional functions differ from extensional functions. Extensional functions h are defined

by explicitly enumerating the pairs (x, h(x)) defining the function. Maps and NIMs are
example of extensional functions and they are described in the next chapters.

Proc Values

Processes are for actions what functions are for expressions. And in the same way that
functions are values, processes are values too.

The ::-name of a process can be used in an expression to denote the corresponding process
definition, in a manner similar to the @-identifier used for intensional functions. Such values
are qualified as proc values and the corresponding type is named proc. Like intentional
functions, proc values are first class values. They can be passed as arguments to a function or
a procedure call.

They are two main operations on proc values :

• “calling” the corresponding process;

• “killing” all instances of this process.

Processes are described more in detail in chapter process.

Exec Value

An exec value refers to a specific run of a compound action. Such values are created when a
process is instantiated, see section process, but also when the body of a loop, a forall, or of a
whenever is spanned. This value can be used to abort the corresponding action. It is also
used to access the values of the local variables of this action. See below.

They are several ways to get an exec:

• The special variable $MYSELF always refers to the exec of the enclosing compound
action.

/Reference/9-functions/index.html
/yet-to-be-written.html
/Library/Functions/00intro/index.html
/Reference/9-functions/index.html
/yet-to-be-written.html
/Reference/data-nim/index.html
/Reference/10-process/index.html
/Reference/10-process/index.html

244 CHAPTER 14. EXPRESSIONS

• The special variable $THISOBJ always refers to the object referenced by a method (in a
method definition) or in the clauses of an object definition.

• A process call returns the exec of the instance launched, see section process call.

• Through the “action as expression” construct — see section Action As Expression.

Exec as Coroutines or Lightweight Processes

An exec refers to a durative action (an action that lasts through time). They corresponds
to the notion of shred in ChucK or more fundamentally, to the notion of coroutine used to
structure and implement the reactive and timed part of the runtime.

The concept of coroutines was introduced in the early 1960s and constitutes one of the
oldest proposals of a general control abstraction. The notion of coroutine was never precisely
defined, but three fundamental characteristics of a coroutine are widely acknowledged:

• the values of data local to a coroutine persist between successive calls;

• the execution of a coroutine is suspended as control leaves it, only to carry on where it
left off when control re-enters the coroutine at some later stage;

• they are non-nonpreemptive: coroutines transfer control among themselves in an explicit
way with some control-transfer operations (there is no preemption, nor interruption).

As coroutines, Antescofo’s execs have several characteristic features: they are first-class
objects, which can be freely manipulated by the programmer. There is only one control transfer
operation: waiting a delay, see chapter The Manufacturing of Time. This operation corresponds
to the yield operation used to suspend a coroutine execution: the coroutine’s continuation
point is saved so that the next time the coroutine is resumed, its execution will continue
from the exact point where it suspended. But here there is no explicit resume operation
for execs. And contrary to usual coroutines, the creation of new coroutines corresponds to
the principal control structures (whenever, loop, curve. . . implicitly each compound action
specifies a coroutine).

An exec, much like a thread, represents an independent unit of execution which operates
concurrently and can share data with other execs. But unlike conventional threads, whose
execution is interleaved in a non-deterministic manner by a preemptive scheduler, an exec is a
deterministic piece of computation and is naturally synchronized with all other execs via the
shared timing mechanism, the synchronization constructs and the priority of actions.

Execs have a priority, so the sequence of execution of execs that run at the same date (in
the same instant), is unambiguously determined. See chapters The Manufacturing of Time
and Action Priority.

Alive and Dead Exec

The action run referred by the exec may be elapsed or still running. In the former case we
say that the exec is dead and active in the latter case. For example, the exec returned by
evaluating an atomic action (with a 0-duration run) returns the special exec which is always
dead.

A conditional construct can be used to check the status of the exec:

/Reference/compound_process_creation/index.html
/Reference/exp_action/index.html
/Reference/time_manufacturing/index.html
/Reference/time_manufacturing/index.html
/Reference/time_priority/index.html

DATA STRUCTURES 245

$p := ::proc(...)
...
if ($p)
{ /* performed if the instance of ::proc is still running */ }
else
{ /* performed if the exe is dead */ }

Abort with Exec

Exec values can be used as an argument of an abort command. Notice that an exec refers to
a specific instance of an action. So used in an abort command, it aborts solely the referred
instance while using the label of an action will abort all the running instances of this action.

An abort command on a dead exec does nothing (and does not signal an error).

Accessing a Local Variable Through an exec.

Exec can also be used to access the local variables of the referred compound action. This is
mostly useful for processes (cf. sect. Assignment using the dot notation).

Accessing a local variable through an exec relies on the dot notation: the left hand side of
the infix operator . must be an expression referring to an active exec and the right hand side
is a variable visible from the referred exec.

Accessing a variable through the dot notation is a dynamic mechanism and the variable is
looked first in the instance referred by the exec, but if not found in this context, the variable
is looked up in the context of the exec itself, i.e. in the enclosing compound action, and so
on, until it is found. If the top-level context is reached without finding the variable, an undef
value is returned and an error message is issued. See sect. procVariable for an example.

The reference of a local variable using the dot notation can be used in an assignment, see
sect. procVariable for an example involving a process instance (but this feature works for any
exec).

Data Structures

Antescofo currently provides four kinds of data structures:

• a string is a sequence of characters,

• a map is a dictionary with arbitrary keys and values,

• a tab is a vector holding possibly heterogeneous values,

• a nim is an interpolated function defined by a sequence of breakpoints.

These data structures are described in the following sections.

/Reference/10-process/index.html#assignment-using-the-dot-notation
/Reference/10-process/index.html#assignment-using-the-dot-notation
/Reference/10-process/index.html#assignment-using-the-dot-notation
/Reference/data-string/index.html
/yet-to-be-written.html
/Reference/data-tab/index.html
/Reference/data-nim/index.html

246 CHAPTER 14. EXPRESSIONS

String Value

String constants are written between quotes. To include a quote in a string, the quote must
be escaped:

print "this is a string with a \" inside"

Others characters must be escaped in string: \n is for end of line (or carriage-return), \t
for tabulation, and \\ for backslash.

Characters in a string can be accessed as if it was a tab (see sect. tab). Characters in a
string are numbered starting from 0, so:

"abc"[1] --> "b"

Note that the result is a string with only one character. There is no specific type dedicated
to the representation of just one character. The function [@size] can be used to get the number
of characters in a string.

Notice also that strings are immutable values: contrary to tabs, it is not possible to change
a character within a string. A new string must be constructed instead.

The operator + corresponds to string concatenation:

$a := "abc" + "def"
print $a

will output on the console abcdef. By extension, adding any kind of value v to a string
concatenates the string representation of v to the string:

$a := 33
print ("abc" + $a)

will output "abc33". The value of the variable $a was automatically converted to type
String before being concatenated.

There are several {!Library/Functions/string_functions.list!}
The function [@explode] can be used to convert a string into a tab (vector) of characters

(represented as string of size one). This makes it possible to use the functions defined for tabs.
If a tab contains multiple strings, they can be concatenated using the [@reduce] operator to
build a new string:

$t := @explode("123abc")
@assert $t == ["1", "2", "3", "a", "b", "c"]
$tt := @reduce (@+, $t)
@assert $tt == "123abc"

Map Value

A map is a “dictionary” that associates a value to a key. The value can be of any type and so
can the key:

/Reference/data-tab/index.html
/Reference/data-tab/index.html

DATA STRUCTURES 247

map{ (k\ensuremath{_1}, v\ensuremath{_1}), (k\ensuremath{_2}, v\ensuremath{_2}), ... }

The map keyword is case-insensitive and is followed by a comma separated list of (key,
value) pairs enclosed in braces. The previous construction is an expression and keys and values
in the definition list are ordinary expressions. An empty map is specified by an empty (key,
value) list:

MAP{}

The types of the keys and values are not necessarily homogeneous. So a map may include
an entry which associates a string to a number and later a map to a string, etc.:

map{ (1, "one"),
("dico", map{ ("pi", 3.14), ("e", 2.714), ("sqr2", 1.414) }),
(true, [0, 1, 2, 3]),
(1.234, 12 + 34)

}

A map is an ordinary value and can be assigned to a variable to be used later. The usual
notation for function application is used to access the value associated to a key:

$dico := map{ (1, "first"), (2, "second"), (3, "third") }
...
print ($dico(1))
print ($dico(3.14))

will print

first
<undef>

The undef value is returned for the second call because there is no corresponding key.

Extensional Functions

A MAP can be seen as a function defined by extension: an image (the value) is explicitly
defined for each element in the domain (i.e., the set of keys). NIMs are also extensional
functions.

Extensional functions are handled as values in Antescofo. This is also the case for intentional
functions, see chapter Functions.

In an expression, extensional functions or intentional functions can be used interchangably
where a function is expected. In other words, you can apply an extensional function to get a
value, in the same way you apply a predefined or a user-defined intentional function:

@fun_def @factorial($x) { ($x <= 0 ? 1 : $x * @factorial($x - 1)) }
$f := MAP{ (1,2), (2,3), (3,5), (4,7), (5,11), (6,13), (7,17) }
$u := $f(5) + @factorial(5)
$v := @map(@factorial, [1, 2, 3])
$w := @map($f, [1, 2, 3])

/Reference/data-nim/index.html
/Reference/9-functions/index.html

248 CHAPTER 14. EXPRESSIONS

The computation of $w shows that a MAP is passed as an argument of the higher-order
[@map] functions. Dot not confuse the case-insensitive MAP keyword with the name of the
function @map. This function applies its first argument to all elements of the tab passed as
the second argument.

Domain, Range and Predicates

One can test if a map m is defined for a given key k using the predicate @is_defined(m,
k). This is not the same as testing the value returned by m(k) is undef because the key can
be present in the dictionnary with the value undef.

The predefined [@is_integer_indexed] applied on a map returns true if all of its keys are
integers. The predicate [@is_list] returns true if the keys form the set {1, . . . , n} for some n.
The predicate [@is_vector] returns true if the predicate is satisfied and if every element in the
range satisfies [@is_numeric].

The functions [@min_key] and [@max_key] compute the smallest and largest value keys
respectively amongst the keys of its map argument.

The functions [@min_val] and [@max_val] do the same for the values of its map argument.
In a boolean expression, an empty map acts as the value false. Other maps are converted

into the value true.
The function [@domain] applied on a map returns the tab of its keys. In the returned tab,

the keys are in increasing order. The function [@range] applied on a map returns the tab of
its values. The order of the values reflects the order of their associated keys. For example

@domain({MAP{("zero", 0.0), ("0", 0), ("one", 1)}) --> ["0", "one", "zero"]
@range({MAP{("zero", 0), ("0", 0), ("one", 1)}) --> [0, 1, 0.0]

The functions [@count], [@find], [@member] and [@occurs] work on maps as well as on tab
and string.

@member(m, v) returns true if there is a key k such that m(k) == v and returns
false otherwise.

@count(m, v) returns the number of keys k such that m(k) == v.
@occurs(m, v) returns the first key k (for the < ordering) such that m(k) == v if such

a key exists, else the undef value.
Finally, @find(m, f) returns the first key k (for the < ordering) such that f(k, m(k))

returns true and the undef value if such an entry does not exist.

Constructing Maps

The operations described below act on a whole map to build new maps.
[@select_map] restricts the domain of a map: @selec_map(m, P) returns a new map n

such that n(x) = m(x) if P(x) is true, and undefined elsewhere. The predicate P is an
arbitrary function (e.g., it can be a user-defined function or a dictionary).

The operator [@add_pair] can be used to insert a new (key, val) pair into an existing map:

@add_pair(dico, 33, "doctor")

/Reference/data-tab/index.html
/Reference/data-tab/index.html
/Reference/data-string/index.html

DATA STRUCTURES 249

enriches the dictionary dico with a new entry (no new map is created). Alternatively,
the overloaded function [@insert] can be used: [@insert] can be used on tabs and maps;
[@add_pair] is just the version specialized for maps.

[@shift_map](m, p) returns a new map $n such that ‘ n(x+p) = m(x)
[@gshift_map](m, f) generalizes the previous operator using an arbitrary function f

instead of an addition and returns a map n such that n(f(x)) = m(x)

[@mapval](m, f) composes function f with the map m: the results n is a new map such
that n(x) = f(m(x)).

[@map_compose](m, n) builds a new map with keys taken in the images of m and values
in n for all keys in the intersection of the keys of m and n. In other words, if

m = MAP{ (k\ensuremath{_1}, m\ensuremath{_1}), (k\ensuremath{_2}, m\ensuremath{_2}), (k\ensuremath{_3}, m\ensuremath{_3}), ... }
n = MAP{ (l\ensuremath{_1}, n\ensuremath{_1}), (l\ensuremath{_2}, n\ensuremath{_2}), (l\ensuremath{_3}, n\ensuremath{_3}), ... }

constructs the map:

MAP{ ..., (m\ensuremath{_i}, n\ensuremath{_i}), ... }

if there exists an i such that m(i) = mi and n(i) = ni.
[@merge] combines two maps into a new one. The operator is asymmetric, that is, if m =

@merge(a, b), then:

m(x) = if (@is_defined(a, x)) then a(x) else b(x)

[@remove](m, k) removes the entry of key k in map m (no new map is created). If k is
not present in m, the command has no effect. This function is overloaded and also applies to
tabs.

Extension of Arithmetic Operators

Arithmetic operators can be used on maps: the operator is applied “pointwise” on the
intersection of the keys of the two arguments. For instance:

$d1 := MAP{ (1, 10), (2, 20), (3, 30) }
$d2 := MAP{ (2, 2), (3, 3), (4, 4) }
$d3 := $d1 + $d2
print $d3

will print

MAP{ (2, 22), (3, 33) }

If an arithmetic operator is applied on a map and a scalar, then the scalar is implicitly
converted into the relevant map:

$d3 + 3

computes the map MAP{ (2, 25), (3, 36) }.

250 CHAPTER 14. EXPRESSIONS

Map Transformations

[@clear] erases all entries in the map.
[@listify] applied on a map builds a new map where the keys have been replaced by their

rank in the ordered set of keys. For instance, given

m = MAP{ (3, 3), ("abc", "abc"), (4, 4)}

:::antecofo @listify(m) returns

MAP{ (1, 3), (2, 4), (3, "abc") }

because we have 3 < 4 < "abc".

Score reflected in a Map

Several functions can be used to reflect the events of a score into a map5:

• [@make_score_map] returns a map where the key is the event number (its rank in the
score) and the associated value, its position in the score in beats (that is, its date in
relative time).

• [@make_duration_map] returns a map where the key is the event number (its rank in
the score) and the associated value, its duration in beats (relative time).

• [@make_label_pos] returns, like the following, returns a map whose keys are the labels
of the events and whose values are the position (in beats) of the events.

• [@make_label_bpm] returns a map associating the event labels to the BPM at this
point in the score.

• [@make_label_duration] returns a map associating to the event of a label, the duration
of this event.

• [@make_label_pitches] returns a map associating a vector of pitches to the label of an
event. A corresponds to a tab of size 1, a with n pitches to a tab of size n, etc.

These functions take two optional arguments, start and stop, to restrict where in the score
the map is built. The map contains the key corresponding to events that are in the interval
[start, stop] (interval in relative time). Called with no arguments, the map is built for the
entire score. With only one argument start, the map is built for the labels or the positions
strictly greater than start.

Variable’s History Reflected in a Map

The sequence of the values of a variable is kept in a history. This history can be converted
into a map: see section history reflected in a map.

5The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

http://en.wikipedia.org/wiki/Regular_expression

DATA STRUCTURES 251

List of {!Library/Functions/map_functions.list!}

Tables

Tab values (tables) are used to define simple vectors and more. They can be defined by giving
the list of their elements:

{!BNF_DIAGRAMS/tabdef_expr.html!}
The tab keyword is case-insensitive and optional. For example:

$t := tab [0, 1, 2, 3] ; or
$t := [0, 1, 2, 3] ; the `tab' keyword is optional

these statements assign a tab with 4 elements to the variable $t.
Tables are compared in lexicographical order. In a boolean expression, an empty tab is

false. Otherwise, it’s true.
Elements of a tab can be accessed through the usual square bracket ...[...] notation.

Element indexing starts at 0, so $t[n] refers to the (n+ 1)th element of the tab refered by
$t. Notice that the arguments of the square bracket are expressions6. Elements of a tab can
be any kind of value, even a tab, which would create a multidimensional array. Additionally,
one tab can contain multiple different types of objects.

The ForAll action can be used to iterate through all of the elements in a tab. A tab
comprehension can be used to build new tab by filtering and mapping tab elements. There
are also several predefined functions to transform a tab.

Multidimensional tab

Elements of a tab are arbitrary, so they can be other tabs. Nested tabs can be used to represent
matrices and multidimensional arrays. For instance:

[[1, 2], [3, 4], [4, 5]]

is a 3× 2 matrix that can be interpreted as 3 lines and 2 columns. For example, if $t is a
3× 2 matrix, then the first element of the second line is accessed by the expression

$t[1][0]
$t[1, 0] ; equivalent form

The function [@dim] can be used to query the dimension of a tab, that is, the maximal
number of tab nesting found in the tab.

A multidimensionnal array is a homogeneous tab: a tab of tab elements is an multidimen-
sional array (of dimension 1) and a tab whose elements are multidimensionnal arrays of the
same dimension and size are also multidimensional arrays.

If a tab’s argument is a multidimensional array, the function [@shape] returns a tab of
integers wherein the element i represents the number of elements in the ith dimension. For
example

6The arguments of the square brackets are expressions so one can write, e.g. (@f($x))[$n] to access the
value of the $nth element of the tab returned by a function @f. Parentheses are used to apply the brackets to
the value returned by @f instead on $x.

https://en.wikipedia.org/wiki/Lexicographical_order
/Reference/compound_forall/index.html

252 CHAPTER 14. EXPRESSIONS

@shape([[1, 2], [3, 4], [4, 5]]) --> [3, 2]

The function returns 0 if the argument is not a well-formed (dimensionally consistent)
array. For example

@shape([1, 2, [3, 4]]) --> 0

Note that for this argument, [@shape] returns ::antescofo 0 because the argument is a
tab nested into a tab, but it is not an array because the element of the top-level tab are not
homogeneous. The tab

[[1, 2], [3, 4, 5]]

also fails to be an array, despite that all elements are homogeneous, because these elements
are not of the same size.

Tab Comprehension

If a tab is specified by giving the list of its elements, the definition is said in extension. The
tab [...] construction is an expression that defines a tab in extension.

A tab can also be defined in comprehension. A tab comprehension is an expression to build
a tab from an existing tab or on some iterators. The general form of a tab comprehension is

[output_expression | $var in input_set , predicate]

where output_expression is an expression, $var is a variable identifier, input_set
is an expression evaluating to a tab or an integer or the construction e1 .. e2 : e3, and
predicate is a boolean expression. More precisely:

{!BNF_DIAGRAMS/tabcomprehension_expr.html!}
This construction follows the form of the mathematical set-builder notation (set compre-

hension). For instance

[e | $x in t]

generates a tab of the values of the output expression e by running through the elements
specified by the input set t. If t is a tab, then takes all the values in the tab. For example:

[2*$x | $x in [1, 2, 3]] --> [2, 4, 6]

The input set t may also evaluate to a numeric value n: in this case, take all the numeric
values between 0 and n excluded by unitary steps:

[$x | $x in (2+3)] --> [0, 1, 2, 3, 4]
[$x | $x in (2 - 4)] --> [0, -1]

https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/Set-builder_notation

DATA STRUCTURES 253

Note that the variable $x is a local variable visible only in the tab comprehension: its name
is not meaningful and could be any variable identifier (but beware that it can mask a regular
variable in the output expression, in the input set or in the predicate).

The input set can be specified by a range giving the starting value, the step and the
maximum value:

[e | $x in start .. stop : step]

The specification start .. stop specifies a range where start is included and stop
is excluded. If the specification of the step is not given, it value is +1 or −1 following the sign
of (stop - start). The specification of start is also optional: in this case, the variable
will start from 0. For example:

[$s[$i] + $t[$i] | $i in @size($s)]

creates a tab whose elements are the pointwise sums of $s and $t (assuming that they
have the same size). Notice that expression $i in (@size($s)) enumerates the indices of
$s. Expression

[@sin($t) | $t in -3.14 .. 3.14 : 0.1]

generates a tab of 62 elements: sin(−3.14), sin(−3.04), ..., sin(3.04).
Tab comprehension may specify a predicate to filter the members of the input set:

[$u | $u in 10, $x % 3 == 0] --> [0, 3, 6, 9]

filters the multiple of 3 in the interval [0, 10). The expression used as a predicate is given
after a comma, at the end of the comprehension.

Tab comprehensions are ordinary expressions, so they can be nested. This can be used to
create a tab of tabs. Such a data structure can be used to make matrices:

[[$x + $y | $x in 1 .. 3] | $y in [10, 20, 30]]
--> [[11, 12], [21, 22], [31, 32]]

More Examples of Tab Comprehension
Here are some additional examples of tab comprehensions to illustrate the syntax:

$z := [0 | (100)] ; builds a vector of 100 elements, all null

In this example, the iterator variable is absent. In this case, the input set is constrained to
be an expression between parentheses and evaluating to either a number or a tab (it cannot
be a range).

$s := [$i | $i in 40, $i % 2 == 0] ; lists the even numbers from 0 to 40
$t := [$i | $i in 40 : 2] ; same as previous

254 CHAPTER 14. EXPRESSIONS

$u := [2*$i | $i in (20)] ; same as previous

; equivalent to ($s + $t) assuming arguments of the same size
[$s[$i] + $t[$i] | $i in @size($t)]

$m := [[1, 2, 3], [4, 5, 6]] ; builds a matrix of 3x2 dimensions
$m := [[@random() | (10)] | (10)] ; builds a random 10x10 matrix

; transpose of a matrix $m
[[$m[$j, $i] | $j in @size($m)] | $i in @size($m[0])]

; scalar product of two vectors $s and $t
@reduce(@+, $s * $t)

$v := [@random() | (10)] ; builds a vector of ten random numbers
; matrice*vector product
[@reduce(@+, $m[$i] * $v) | $i in @size($m)]

; squaring a matrix $m, i.e. $m * $m
[[@reduce(@+, $m[$i] * $m[$j]) | $i in @size($m[$j])]

| $j in @size($m)]

Mutating a tab’s element

A tab is a mutable data structure : one can change an element within this data structure.
Although a similar syntax is used, changing one element in a tab is an atomic action different
from the assignment of a variable. For example

let $t[0] := 33
$t[0] := 33 ; the 'let' is optional if the tab is denoted by a variable

changes the value of the first element of the tab referred by $t to the value 33. The general
syntax is:

{!BNF_DIAGRAMS/tab_assignment.html!}
Unless the tab is referred to by a variable, the let keyword is mandatory. It is required

when the expression in the left hand side of the assignment is more complex than a variable, a
simple reference to an array element or a simple access to a local variable of an exec. See sect.
Assignment.

Because the tab to mutate can be referred to by an arbitrary expression, one may write
something like:

$t1 := [0, 0, 0]
$t2 := [1, 1, 1]
@fun_def @choose_a_tab() { (@rand(1.0) < 0.5 ? $t1 : $t2) }
let @choose_a_tab()[1] := 33

that will change the second element of a tab chosen randomly between $t1 and $t2. Notice
that:

/Reference/atomic_assignation/index.html

DATA STRUCTURES 255

let @choose_a_tab() := [2, 2, 2] ; invalid statement

raises a syntax error: this is neither a variable assignment nor the update of a tab element
(there are no indices to access such element).

Elements of nested tabs can be updated using the multi-index notation:

$t := [[0, 0], [1, 1], [2, 2]]
let $t[1,1] := 33

will change the tab referred by to [[0, 0], [1, 33], [2, 2]]. One can change an
entire “column” using partial indices:

$t := [[0, 0], [1, 1], [2, 2]]
let $t[0] := [33, 33]

will produce [[33, 33], [1, 1], [2, 2]]. Nested tabs are not homogeneous, so
the value in the r.h.s. can be anything.

Sharing and copying a tab

In the introduction of section Values, we mention that a compound value is refered through a
handle (or pointer). So, the same compound value can be shared between variables or shared
between nested data structures.

This can be illustrated by the following example:

let $t := [0, 0, 0]
$u := $t
let $t[0] := 333
print $u ; will print [333, 0, 0]

After the assignment to $t, the value referenced by :::atescofo $u has mutated,
because the same tab is referenced by $t and $u.

Assignment of a tab, and more generally a compound value, does not imply the copy of the
referenced value. The function [@copy] can be used to create a fresh value:

let $t := [0, 0, 0]
$u := @copy($t)
let $t[0] := 333
print $u ; will print [0, 0, 0]

The sharing of data structures is useful: the same tab can be referred to from many different
places in the score and one update is visible by all the tab referrers. However, it may be
troublesome. The following code is intended to create a 3×3 null matrix $m0

let $row := [0, 0, 0]
let $m0 := [$row, $row, $row]

/Reference/exp_value/index.html

256 CHAPTER 14. EXPRESSIONS

but this is not exactly the case. As a matter of fact, if we want to turn $m0 in the identity
matrix using assignment:

let $m0[0, 0] := 1
let $m0[1, 1] := 1
let $m0[2, 2] := 1

what we obtain is a a 3×3 matrix full of 1: because all the row of $m0 refers to the same
tab.

Assignment versus Mutating a tab’s element

Changing the value of a tab’s element is not a variable assignment: the variable has not been
“touched”, it is the value referred by the variable that has mutated.

The difference between variable assignment and mutating one element in a tab is more
evident in the following example:

let [0, 1, 2][1] := 33

where it is apparent that no variable at all is involved. The previous expression is perfectly
legal: it changes the second element of the tab [0, 1, 2]. This change will have no effect
on the rest of the program because the mutated tab cannot be refered elsewhere but this does
not prevent the action to be performed.

An important consequence is that mutating a tab elements does not trigger a whenever
even if a variable is involved in the assignment. It is however very easy to trigger a whenever
watching a variable referring to a tab, after the update of an element: it is enough to assign it
to itself:

$t := [1, 2, 3]
whenever ($t[0] == 0) { ... }
let $t[0] := 0 ; does not trigger the whenever
$t := $t ; the whenever is triggered

We can mutate the first element of $t but this does not trigger the whenever. To do so,
we assign the variable to itself. As a matter of fact, a whenever watches the assignment of a
set of variables , NOT the mutation of the values referred by these variables.

Listable Operators

Usual arithmetic and relational operators are listable (cf. other listable functions in annex
Library).

When an operator op is marked as listable, the operator is extended to accept tab arguments
in addition to scalar arguments. Usually, the result of the application of op on tabs is the
point-wise application of op to the scalar elements of the tab. But for relational operators
(predicates), the result is the predicate that returns true if the scalar version returns true on
all the elements of the tabs. If the expression mixes scalar and tab, the scalars are extended
pointwise to produce the result. So, for instance:

/Reference/compound_whenever/index.html
/Reference/compound_whenever/index.html
/Reference/compound_whenever/index.html
/Reference/compound_whenever/index.html
/Library/Functions/00intro/index.html

DATA STRUCTURES 257

[1, 2, 3] + 10 --> [11, 12, 13]
2 * [1, 2, 3] --> [2, 4, 6]
[1, 2, 3] + [10, 100, 1000] --> [11, 102, 1003]
[1, 2, 3] < [4, 5, 6] --> true
0 < [1, 2, 3] --> true
[1, 2, 3] < [0, 3, 4] --> false

Tab manipulation

Several functions exist to manipulate tabs intentionally, i.e., without referring explicitly to
the elements of the tab. We briefly describe some of these functions. The Library exhaustively
describes all tab related functions (click on function name to access the page dedicated to the
function).

• [@car](t) returns the first element of t if is not empty, else it returns an empty tab.

• [@cdr](t) returns a new tab corresponding to t deprived of its first element. If t is
empty, returns an empty tab.

• [@clear](t) shrinks the argument to a zero-sized tab (no more elements in t, which is
modified in-place).

• [@concat](t1, t2) returns the concatenation t1 of and t2.

• [@cons](v, t) returns a new tab made of v in front of t.

• [@count](t, v) returns the number of occurrences of v in the elements of t. Also
works on string and maps.

• [@dim](t) returns the dimension of t, i.e. the maximal number of nesting in the
elements of t. If t is not a tab, the dimension is 0. A “flat” tab (a vector) has
dimension 1.

• [@drop](t, n) gives a copy of t with its first n, elements dropped if n is a positive
integer, and with its last elements dropped if n is a negative integer. If n is a tab of
integers, returns the tab formed by the elements of whose indices are not in n.

• [@empty](t) returns true if there is no element in t, and false elsewhere. Also works
on maps.

• [@find](t, f) returns the index of the first element of that satisfies the predicate f.
The first argument of f is the index of the element and the second is the element itself.
Works also on strings and maps.

• [@flatten](t) builds a new tab where the nesting structure oft has been flattened. For
example, @flatten ([[1, 2], [3], [[], [4, 5]]]) returns [1, 2, 3, 4,
5, 6].

/Library/Functions/00intro/index.html

258 CHAPTER 14. EXPRESSIONS

• [@flatten](t, l) returns a new tab where l levels of nesting have been flattened.
If l == 0, the function is the identity. If l is strictly negative, it is equivalent to
[@flatten] without the level argument.

• [@gnuplot](t) plots the elements of the tab as a curve using the external command
gnuplot. See the description [@gnuplot] in the index for further information and
variations.

• [@insert](t, i, v) inserts “in place” the value into the tab after the index . If is
negative, the insertion takes place in front of the tab. If ≤ the insertion takes place at
the end of the tab. Notice that the function is overloaded and applies also on maps. The
form is also used to include a file at parsing time.

• [@is_prefix], [@is_suffix] and [@is_subsequence] operate on tabs as well as on strings.
Cf. the description of these functions in library.

• [@lace](t, n) returns a new tab whose elements are interlaced sequences of the elements
of the t subcollections, up to size n. The argument is unchanged. For example:
@lace([[1, 2, 3], 6, ["foo", "bar"]], 12) returns [1, 6, "foo",
2, 6, "bar", 3, 6, "foo", 1, 6, "bar"].

• [@map](t, f) computes a new tab where the ith element has the value f(t[i]) .

• [@max_val](t) returns the maximum element among those of t.

• [@member](t, v) returns true if v is an element of t. Also works on string and map.

• [@min_val](t) returns the minimum among the elements of t.

• [@normalize](t, min, max) returns a new tab with the elements normalized between
min and max. If min and max are omitted, they are assumed to be 0 and 1 respectively.

• [@occurs](t, v) returns the first index whose value equals the second argument. Also
on string and map (the returned value is the corresponding key in a map).

• [@permute](t, n) returns a new tab which contains the nth permutation of the elements
of t. They are s! permutations, where s is the size of t (and ! is the factorial
function). The first permutation is numbered 0 and corresponds to the permutation which
rearranges the elements of t in an vector t0 such that elements are sorted increasingly.
The tab t0 is the smallest element7 among all tab that can be done by rearranging the
element of t. The first permutation rearranges the elements of t in a tab t1 such
that t0 < t1 for the lexicographic order and such that any other permutation gives a tab
tk lexicographicaly greater than t0 and t1. Etc. The last permutation (numbered s!− 1)
returns a tab where all elements of t are in decreasing order.

• [@push_back](t, v) pushes v to the end of t and returns the updated tab (t is
modified in place).

7smallest for the < ordering. On tabs, this ordering corresponds to the lexicographic ordering.

/Library/Functions/00intro/index.html

DATA STRUCTURES 259

• [@push_front](t, v) pushes v to the beginning of t and returns the updated tab (t
is modified in place and the operation requires the reorganization of all elements).

• [@reduce](t, f) computes f(... f(f(t[0], t[1]), t[2]), ... t[s-1])
where s is the size of t. If t is empty, an undefined value is returned. If has only one
element, this element is returned. Otherwise, he binary operation f is used to combine
all the elements in into a single value. For example, @reduce(@+, t) returns the
sum of the elements of t.

• [@remove](t, i) removes the element at index i in t (t is modified in place). This
function is overloaded and also applies to maps.

• [@remove_duplicate](t) keeps only one occurrence of each element in t. Elements not
removed are kept in order and t is modified in place.

• [@replace](t, find, rep) returns a new tab in which a number of elements have
been replaced by another. See full description at [@remove_duplicate] in library.

• [@reshape](t, s) builds an array of shape s with the element of tab t. These
elements are taken circularly one after the other. For instance @reshape([1, 2,
3, 4, 5, 6], [3, 2]) returns [[1, 2], [3, 4], [5, 6]].

• [@resize](t, s) increases or decreases the size of t to s elements. If s is greater than
the size of t, then additional elements will be <undef>. This function returns a new
tab.

• [@reverse](t) returns a new tab with the elements of in reverse order.

• [@rotate](t, n) builds a new array which contains the elements of t circularly shifted
by n. If n is positive the elements are right-shifted, otherwise they are left-shifted.

• [@scan](f, t) returns the tab [t[0], f(t[0], t[1]), f(f(t[0], t[1]),
t[2]), ...] of the partial result of the reduction (see [@reduce]). For example, the
tab of the factorials up to 10 can be computed by: @scan(@*, [$x : $x in 1 ..
10]).

• [@scramble](t) returns a new tab where the elements of t have been scrambled (their
order is randomized). The arguments are unchanged.

• [@size](t) returns the number of elements of t.

• [@slice](t, n, m) gives the elements of t of indices between n included up to m
excluded. If n > m the element are given in reverse order.

• [@sort](t) sorts in-place the elements into ascending order using <.

/Library/Functions/00intro/index.html

260 CHAPTER 14. EXPRESSIONS

• [@sort](t, cmp) performans an in-place sort on the elements, putting them in ascending
order. The elements are compared using the function cmp. This function must accept
two elements of the tab as arguments and returns a value converted to bool. The value
returned indicates whether the element passed as first argument is considered to go
before the second.

• [@sputter](t, p, n) returns a new tab of length n. This tab is filled as follows. The
process starts with the first element in t as the current element. Successively for each
element e in the result, a random number p′ between 0 and 1 is compared with p: if it
is lower, then the current element becomes the value of e. If p′ is greater, the element
after the current element becomes the new current element and this element becomes
the value of e.

• [@stutter](t, n) returns a new tab whose elements are each elements of t repeated n
times. The argument is unchanged.

• [@take](t, n) gives the first elements of t if n is a positive integer and the last
elements of t if n is a negative integer. If n is a tab of indices, it gives the tab of
elements whose indices are in n.

Lists and Tabs

Antescofo’s tabs may be used to emulate lists

• [@car], [@cons], [@cdr], [@drop], [@last], [@map], [@slice] and [@take] are similar to well
known functions that exist in Lisp.

• [@concat] returns the concatenation (append) of two lists.

• Arithmetic operations on vectors are done pointwise, as in some Lisp variants.

In particular, the operators [@cons], [@car] and [@cdr] can be used to destructure and to
build a tab. They can be used to define recursive functions on tabs in a manner similar to
that of recursive functions on lists. However, it builds a new tab unlike the operation cdr on
list in Lisp. A tab comprehension is often more convenient and usually more efficient than a
recursive definition.

The Library documents all {!Library/Functions/tab_functions.list!}

New Interpolated Map

Interpolated maps are values representing a piecewise function defined by interpolation between
a sequence of breakpoints.

They have been initally defined as piecewise linear functions which have been superseded
by NIM (an acronym for New Interpolated Map). NIM extends the idea of interpolation
between breakpoints to vectors and to a superset of the interpolation types available in the
curve construct.

/Library/Functions/00intro/index.html
/Reference/compound_curve/index.html

DATA STRUCTURES 261

A NIM is an aggregate data structure that records the breakpoints of the piecewise
interpolation and the interpolation type (as in a curve). A NIM is considered an extensional
function like a map. It can be applied to a numerical value to return the corresponding image.

NIMs can be used as an argument of the curve construct which allows the breakpoints to
be dynamically built, “playing” the function later in time. See section Curve Playing a NIM.

Continuous and Discontinuous NIM

NIMs can represent continuous or discontinuous functions.
Continuous NIM are defined by an expression of the form:

NIM { x\ensuremath{_0} y\ensuremath{_0}, d\ensuremath{_1} y\ensuremath{_1} "cubic"
, d\ensuremath{_2} y\ensuremath{_2} "linear"
, d\ensuremath{_3} y\ensuremath{_3} "bounce"
, ...
, d\ensuremath{_i} y\ensuremath{_i} "t\ensuremath{_i}"
, ...

}

which specifies a piecewise function f : between xi and xi+1 = xi + di+1, function f is an
interpolation of type ti+1 from yi to yi+1. See the following illustration:

Figure 14.4: continuous ni

The previous definition specifies a continuous function because the value of f at the
beginning of [xi, xi+1] is also the value of f at the end of the previous interval.

A second syntax allows one to define a discontinuous function by specifying a different
value for the end of an interval and the beginning of the next one:

NIM { x\ensuremath{_0}, y\ensuremath{_0} d\ensuremath{_0} Y\ensuremath{_0} "cubic"

/Reference/data-map/index.html#extensional-functions
/Reference/data-map/index.html#extensional-functions
/yet-to-be-written.html
/Reference/compound_curve/index.html
/Reference/compound_curve/index.html#curve-playing-a-nim

262 CHAPTER 14. EXPRESSIONS

, y\ensuremath{_1} d\ensuremath{_1} Y\ensuremath{_1} "linear"
, y\ensuremath{_2} d\ensuremath{_2} Y\ensuremath{_2} "bounce"
, ...

}

The definition is similar to the previous form except that on the interval [xi, xi+1] the
function is an interpolation between yi and Yi. See illustration:

Figure 14.5: discontinuous nim

The NIM keyword is case-unsensitive and introduces an expression. The parameters
xi, yi, di, Yi, ti are expressions.

Definition of the NIM outside the breakpoints

The function f is extended outside [x0, xn] such that

f(x) = y0 for x ≤ x0

f(x) = yn for x ≥ xn = x0 +
n∑
i=0

di

However, the functions [@min_key] and [@max_key] return x0 and xn respectively (these
functions also perform similarly on maps: maps are functions on a discrete range while NIMs
are functions on a continuous range).

Interpolation type

The type of the interpolation is either a constant string or an expression. In the latter
case, however, the expression must be enclosed in parentheses. The names of the allowed

DATA STRUCTURES 263

interpolation types are the same as those of a curve (see curve interpolation methods), and the
interpolation types are illustrated on these figures. Other experimental interpolation methods
are currently under development.

The specification of an interpolation type is optional. When not defined, the interpolation
type is assumed to be linear.

Vectorial NIM

The NIM construct accepts tabs as arguments: in this case, the result is a vectorial function.
For example:

NIM{ [-1, 0] [0, 10], [2, 3] [1, 20] ["cubic", "linear"] }

defines a vectorial of two variables:

~f

(
x1
x2

)
=
(
f1(x1)
f2(x2)

)

where f1 is a cubic interpolation between 0 and 1 for x1 going from −1 to −1 + 2 = 1 and f2
is a linear interpolation between 10 and 20 for x2 going from 0 to 0 + 3 = 3.

The NIM construction is “smart”: the parameters of a vectorized NIM may mix scalar s
and tabs. In this case, the scalar is extended implicitly into a vector of the correct size whose
elements are all equal to s. This is the case even for the specification of the interpolation type.
For example:

NIM{ 0, 0, [1, 2] 10 }

defines the function ~f =
(f1
f2

)
where

f1(x) = 0 if x < 0
= 10 if x > 1
= 10x elsewhere

and

f2(x) = 0 if x < 0
= 10 if x > 2
= 5x elsewhere

A vectorized NIM is listable: it can be applied to a scalar argument. In this case, the scalar
argument x is implicitly extended to a vector of the correct dimension:

~f(x) = ~f

(
x
x
. . .

)

/Reference/compound_curve/index.html
/Reference/compound_curve/index.html#interpolation-methods
/Reference/compound_curve/index.html#examples-of-interpolation-types

264 CHAPTER 14. EXPRESSIONS

The function [@dim] returns the dimension of the image of a NIM, that is, 1 for a scalar
NIM and n 6= 1 for a vectorized NIM, where n is the number of elements of the tab returned
by the application of the NIM.

The function [@size] returns the number of breakpoints of the NIM (which is not equal
to the dimension of the NIM). Note that a nim with zero breakpoints is the result of a bad
definition.

Heterogeneous breakpoints in vectorial NIM
A vectorial NIM can be seen as the aggregation of several scalar NIMs.
The functions [@projection] and [@aggregate] can be used to respectively extract a scalar

nim from a vectorial nim and to aggregate several (scalar or vectorial) nims of dimension
d1, . . . , dp into a nim of dimension d1 + · · ·+ dp.

let $nim1 := NIM{ 0 0, 1 10, 1 0 "sine_in_out" }
let $nim2 := NIM{ -1 10, 4 0 "sine_in_out" }
let $nim3 := @aggregate($nim1, $nim2)

This process can be used to build vectorial NIMs whose breakpoints are different, as in
the specification of vectorial curves. There is no syntax to directly specify such NIMs and
the function [@aggregate] must be used to build such NIM values that are said to have
heterogeneous breakpoints. When printing such a NIM, the function [@aggregate] is used to
list its many components:

Figure 14.6: aggreagte nim

@aggregate(NIM{0 0, 1 10 "linear",
1 0 "sine_in_out"},

NIM{-1 10, 3 0 "sine_in_out"})

/Reference/compound_curve/index.html#vectorial-curve

DATA STRUCTURES 265

The function [@projection] can be used to extract a component from a vectorial NIM:

@projection($nim3, 1) == $nim2 --> true

Extending a NIM

The function [@push_back] can be used to add a new breakpoints to an existing NIM. They
are several variations:

@push_back(nim, d, y1)
@push_back(nim, d, y1, type)
@push_back(nim, y0, d, y1)
@push_back(nim, y0, d, y1, type)
@push_back(nim\ensuremath{_1}, nim\ensuremath{_2})

The four first forms modify the NIM “in-place”. The last form builds a new NIM:

• The first two forms extend a NIM in a continuous fashion (the value at the start of the
added breakpoint is the value of the last breakpoint of the NIM).

• The next two forms explicitly specify the starting value of the added breakpoint, enabling
the specification of discontinuous function.

• The last form extends the nim in the first argument by the breakpoint of the nim in
second argument. It effectively builds the function resulting in the “concatenation” of
the breakpoints.

Note that [@push_back] is an overloaded function: it can also be used to add (in place) an
element at the end of a tab.

NIM Transformation and Smoothing

NIMs can be managed through {!Library/Functions/nim_functions.list!}
See their descriptions in the library. Here, we describe the notions that appear when a

NIM is restructured.

Sampling, homogeneization and linearization
It is possible to convert a NIM with an arbitrary interpolation type to a NIM with a linear

interpolation type.
The function [@sample] takes a NIM nim and a number n and returns a NIM with n

breakpoints and linear interpolation type that approximates nim. The process is illustrated
in the following diagram: the NIM $nim4 in input

@sample($nim3, 5) -->
@aggregate(nim{0 0, 0.333333 3.33333,

/Library/Functions/00intro/index.html

266 CHAPTER 14. EXPRESSIONS

Figure 14.7: sampling a nim

0.333333 6.66667,
0.333333 10,
0.333333 7.5,
0.333333 2.5,
0.333333 0},

nim{-1 10, 0.5 9.33013,
0.5 7.5,
0.5 5,
0.5 2.5,
0.5 0.669873,
0.5 0})

As can be seen, in the case of a vectorial NIM with heterogeneous components, the
approximation is done component by component and the result has heterogeneous breakpoints.

The function [@align_breakpoints] can be used on a NIM with linear interpolation type to
obtain an equivalent NIM with homogeneous breakpoints:

let $nim4 := @sample($nim3, 5)

will compute a NIM with a heterogeneous breakpoint printed as

@align_breakpoints($nim4) -->
NIM { [-1, -1],

[0, 10] [0.5, 0.5] [0, 10]
[0, 9.33013] [0.5, 0.5] [0, 9.33013]
; ...

[0, 0] [0.333333, 0.333333] [0, 0] }

DATA STRUCTURES 267

Figure 14.8: align breakpoints

The function [@sample] samples its NIM argument homogeneously (component by com-
ponent). This is not always satisfactory because the variation of the NIM can differ greatly
between two intervals. The function [@linearize](nim, tol) uses an adaptive sampling step
to linearize nim, to align the breakpoints and to achieve an approximation within a given
tolerance tol.

Figure 14.9: linearize nim

@linearize($nim3) -->
NIM { [-1, -1],

[0, 10] [0.609946, 0.609946] [0, 9.01426],
[0, 9.01426] [0.270743, 0.270743] [0, 8.02012],
; ...
[0.563462, 0.0636838] [0.152573, 0.152573] [0, 0] }

268 CHAPTER 14. EXPRESSIONS

The application of the [@linearize] function can be time consuming and care must be taken
so as not to perturb the real-time computations, e.g., by precomputing a linearization (see
[@eval_when_load] clause and function [@loadvalue]).

NIM simplification

NIMs can be used to record a temporal series of data arriving (through time) from the
environment, using setvar or OSC messages. It is then often useful to simplify the NIM,
in order to have a more compact representation. The underlying idea is that the NIM
approximates a curve known by a series of points, the breakpoints of the NIM, and that this
curve can be approximated by fewer points. The simplified NIM consists of a subset of the
breakpoints that defined the original.

Several functions can be used to achieve a reduction of the number of breakpoints of a NIM
with linear interpolation.

All the simplification functions apply to scalar as well as vectorial NIMs, but consider only
the ”x-coordinate” given by the breakpoints of the first component8. In case of a vectorial
NIM with heterogeneous breakpoints, this can be a drawback. In this case, an equivalent NIM
with homogeneous breakpoints can be first built using the [@align_breakpoints] function.

The three following functions are inspired from polyline simplification functions developed
in computer graphics9:

• [@simplify_radial_distance_t](nim, d) simplies each component of the NIM inde-
pendently by reducing successive breakpoints that are clustered too closely to a single
breakpoint. Because the simplification works on each component independantly, a break-
point in this context is simply a point (x, y) in the plane. The simplification process
starts from the first breakpoint and is iterated until it reaches the final breakpoints.
The first and the last breakpoints are always part of the simplification. All consecutive
breakpoints that fall within a distance from a kept breakpoints are removed. The first
encountered breakpoints that lies further away than is kept.

• [@simplify_radial_distance_v](nim, d): this simplification function is similar to the
previous one but instead of working on each component independently, the vectorial
nature of the nim is taken into account and the “x-coordinate” is ignored. The NIM is
seen as a sequence of points, the image of the NIM at coordinates given by the x part
of the breakpoint of the first component. It is this series of points that is simplified to
build the new NIM. The distance is thus taken in a n-dimensional space, where n is the
dimension of the NIM.

• [@simplify_lang_v](nim, tol, d): this simplification function follow the same ap-
proach as the previous one and consider a sequence of points in a n-dimensional space,
where n is the dimension of the nim and the points are given by the image of the

8If the recorded value is a time series, then the x-coordinate corresponds to time and the NIM will
be homogeneous as it is incrementally built using the function [@push_back]. The only way to build a
non-homogeneous nim is to use the function [@aggregate].

9The following references gives technical details on polyline simplification. Description and evaluation of
several algorithms in a cartographic context are given in this paper. The Ramer–Douglas–Peucker algorithm
follows an idea similar to the Lang algorithm used by [@simplify_lang_v] but the shrinking of the current
interval is dichotomous. This project provides an implementation of the main algorithms is in C++.

/Reference/atomic_command/index.html
/Reference/atomic_osc/index.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.5882&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
http://www.codeproject.com/Articles/114797/Polyline-Simplification

DATA STRUCTURES 269

breakpoints of the first component. Then, a Lang simplification algorithm is applied to
reduce the number of points. The remaining points are used to build the simplified nim.
The Lang simplification algorithm defines a fixed size search-interval. The first and
last points of that interval form a segment. This segment is used to calculate the
perpendicular distance to each intermediate point. If any calculated distance is larger
than the specified tolerance , the interval will be shrunk by excluding its last point. This
process will continue until all calculated distances fall below the specified tolerance, or
when there are no more intermediate points. All intermediate points are removed and a
new search interval is defined starting at the last point from the old interval.

The effect of these simplification functions on a nim can be observed using the function
[@size] which returns, for a nim, its number of breakpoints.

Smoothing and Transformation

The functions described here work independently on each component of a nim. They see each
component as a sequence of points y (the image of the nim) that are smoothed in various way.
The resulting points are used to build a new nim with linear interpolation type. The number
of breakpoints is preserved, as well as their x-coordinate. Only the y-part of the breakpoint
(the image) is affected.

• [@filter_median_t](nim, n) smoother the y by replacing every image by the median
in its range-n neighborhood. Notice that the median is taken in a sequence of 2n+ 1
values. The first n points and the last n points are left untouched.

• [@filter_min_t](nim, n) filters the y by replacing every image by the minimum value
in a sequence of length 2n+ 1 centered on y. The first n points and the last n points
are left untouched.

• [@filter_max_t](nim, n) filters the y by replacing every image by the maximum value
in a sequence of length 2n+ 1 centered on y. The first n points and the last n points
are left untouched.

• [@window_filter_t](nim, coef, pos) replaces every y by the scalar product of coef
(a tab) with a sequence of n values, where n is the size of coef and pos is the position
in this window of the current y (numbering starts with 0). The first pos values and the
last $n - $ pos values are left untouched.
For example, @window_filter_t(nim, [2], 0) builds a NIM by scaling the im-
age of by 2. @window_filter_t(nim, [0.1, 0.2, 0.5, 0.2, 0.1], 2) is a
moving weighted average with symmetric weights around y.

270 CHAPTER 14. EXPRESSIONS

Chapter 15

Functions

Figure 15.1: image from a clock mechanism

If computerized actions in your score observe very repetitive conceptual patterns similar
to electronic leitmotifs, then you might want to simplify your score by defining Functions,

271

272 CHAPTER 15. FUNCTIONS

Process, Macros, Actors and Patterns, which recognize those patterns through user-
defined entities and arguments.

Functions are described in this chapter, processes in the next one and macros in chapter
macro. Functions and processes are first class values in the language: they can be elements in a
tab or a map, passed as arguments to a function or a process, etc. See paragraph Macro versus
Function versus Process for a comparison of the three constructions. Actors and Patterns
are not primitive entities: they are internally rewritten respectively in process and nested
whenever.

Functions live in the domain of expressions and values:

• they are defined by an expression that specifies how the values provided as arguments in
a function call are transformed into a(nother) value;

• they are themselves values (see section Function As Value);

• a function call can appear only inside an expression (as a sub-expression) or where an
expression is expected (for example in the attributes of an action);

• and the call of a function takes “no time” (see sect. synchrony hypothesis).

These properties do not hold for macros nor processes (see page Macro versus Function
versus Process for a comparison of the three constructs).

Antescofo offers several kind of functions. NIM and MAP are two examples of data values
that can act as functions: they can be applied to an argument to provide a value. Maps
are extensional functions: they are qualified as extensional because they enumerate explicitly
the image of each possible argument in the form of a (key, value) list. NIMs are also a
kind of extensional function: if the image y of each argument x is not explicitly given, the
association between the argument and y is taken in a limited set of possibilities constrained
by the breakpoints.

In this chapter, we will focus on intentional functions. Intentional functions f are defined
by arbitrary rules (i.e. by an expression) that specify how an image f(x) is associated to an
element x.

Some intentional functions are predefined and available in the initial environment like the
IEEE mathematical functions. See Library for a description of more than 190 predefined
functions. There is no difference between predefined intentional functions and user’s defined
intentional functions except that in a Boolean expression, a user’s defined intentional function
is evaluated to true and a predefined intentional function is evaluated to false.

Intentional functions can be defined (only at the top-level of the score) and associated
to an @-identifier using the @fun_def construct. For example, the following code shows a
convenient user-defined function that converts MIDI pitch values to Hertz. Any call to (for
example) @midi2hz(69) anywhere in the action language where an expression is allowed
(inside messages, etc.) will be replaced by its value at run-time.

@fun_def midi2hz($midi)
{

440.0 * exp(($midi-69) * log(2) / 12)
}

/Reference/11-macros/index.html
/Reference/macro_function_process_comparison/index.html
/Reference/macro_function_process_comparison/index.html
/Reference/actors/index.html
/Reference/patterns/index.html
/Reference/9-functions/index.html#functions-as-values
/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages
/Reference/macro_function_process_comparison/index.html
/Reference/macro_function_process_comparison/index.html
/Reference/data-nim/index.html
/yet-to-be-written.html
/Library/Functions/00intro/index.html

FUNCTION DEFINITION 273

The example above is rather dubious since we do not use any of Antescofo’s interactive
facilities! The following example is another classical user-defined function that employs the
system variable $RT_TEMPO (musicians’s real-time recognised tempo in BPM) with the goal
of converting beat-time to milli-seconds using the latest tempo from musician. This function
has been used in various pieces to simulate trajectories of effects based on score time (instead
of absolute time). Note that indentation and carriage-returns do not matter:

@fun_def beat2ms($beats) { 1000.*$beats*60.0/$RT_TEMPO }

Function definition

The two examples above are show simple functions whose bodies are just one expression:

@fun_def name($arg1, $arg2, ...) { expression }

The name of the function can be a simple identifier or an @-identifier. But in the rest
of the score, the function must be referred through its @-name. For the moment, there is
no-anonymous functions in Antescofo, no optional arguments, no named arguments.

Writing a large function can become cumbersome and may involve the repetition of common
sub-expressions. To face these problems, since version 0.8, the body of a function can also be
an extended expression. See three kinds of expressions for a presentation of the three classes
of expressions.

{!BNF_DIAGRAMS/function_def.html!}

Extended expressions

An extended expression is an optional local variable declaration introduced by [@local], followed
by an arbitrary sequence of

1. simple expressions optionally preceded by the return keyword

2. local or global variable assignments using [:=] (right hand side is a simple expression)

3. iteration expressions Loop and ForAll whose sub-expressions are extended expressions

4. extended conditional expressions if .. else ... and . . . whose sub-expression are
extended expressions

5. Max/PD messages

6. abort actions.

This structure is formalized by the diagram below where ‘cexpr’ refers to closed expressions,
‘sexpr’ to simple expressions and ‘Exp’ to extended expression.

{!BNF_DIAGRAMS/extended_expressions.html!}
Rationale of Extended Expressions. An extended expression is allowed only in the

body of a function. This is not because they have something special: they are no more

/Reference/6-expression/index.html#three-kinds-of-expressions
/Reference/6-expression/index.html#auto-delimited-expressions
/Reference/6-expression/index.html#simple-expressions

274 CHAPTER 15. FUNCTIONS

than “ordinary” expressions. The only motivation behind this constraint is to avoid syntactic
ambiguities when the score is parsed. With extended expressions, function definitions are
similar to C function definitions that mix expression and statement (but they are differences,
see below). As a matter of fact, Antescofo’s functions mix expressions and (a few kind of)
actions. Only a limited set of actions are allowed in functions: some of the actions that have
zero-duration. The rational is the following: a function call must have no extent in time and
the evaluation must be more efficient than a process call.

After some simple introductory examples, we detail these extended constructions.

First Examples

The function definition

@fun_def polynomial($x, $a, $b, $c, $d)
{

@local $x2, $x3
$x2 := $x * $x
$x3 := $x2 * $x
return $a*$x3 + $b*$x2 + $c*$x + $d

}

computes ax3+bx2+cx+d: the extended expression specifying the function body introduces
two local variables used to factorize some sub-computations. The result to be computed is
specified by the expression after the return statement.

In function

@fun_def fact($x)
{

if ($x <= 0) { return 1 }
else { return $x * @fact($x - 1) }

}

the extended conditional is equivalent to but more readable, than the conditional expression:

($x <= 0 ? 1 : $x * @fact($x - 1))

Notice however that, despite the syntax, this :::atescofo if is definitively NOT the
action described in conditional action: the branches of this are an extended expression, not a
sequence of actions.

Remark that the @fact function is defined by recursion: the definition of @fact calls
@fact itself.

Because Max/PD messages are included in extended expressions, they can be used to trace
(and debug) functions:

@fun_def fact($x)
{

/Reference/exp_cond/index.html
/Reference/compound_if/index.html

FUNCTION DEFINITION 275

print "call fact(" $x ")"
if ($x <= 0)
{

print "return 1"
return 1

}
else
{

@local $ret
$ret := $x * @fact($x - 1)
print "return " $ret
return $ret

}
}

(but see the predefined functions [@Tracing] and [@UnTracing] below for easier tracing of
function calls). Assignments of global variables, Messages and aborts are instantaneous actions
that can be used in extended expressions. They are used for the side-effect they achieve. In
an extended expression, such actions cannot specify attributes.

A loop expression can be used to compute the factorial in an iterative manner, instead of
a recursive one:

@fun_def fact_iterative($x)
{

@local $i, $ret
$ret := 1
$i := 1
Loop {

$ret := $ret * $i
$i := $i + 1

} until ($i == $x + 1)
return $ret

}

which can also be written

@fun_def fact_iterative_bis($x)
{

@local $i, $ret
$ret := 1
$i := 1
Loop {

$ret := $ret * $i
$i := $i + 1

} during [$x #]
return $ret

}

276 CHAPTER 15. FUNCTIONS

Again, the Loop construction involved here is an expression, not an action. So, one
cannot specify a period (expression are supposed to evaluate in the instant), they cannot have
attribute, and and end clause is mandatory to specify the number of iterations of the loop
(but it cannot be a a duration).

Function’s Local Variables and Assignations

To factorize common sub-expressions, and then to avoid re-computation of the same expressions,
extended expressions may introduce local variables using the keyword @local. This syntax
mimics the syntax used for local variables in compound actions (group, whenever, etc.),
but local variables in functions are distinct from the local variables in actions:

• their lifetime is limited to one instant, the instant of the function call,

• so it is neither necessary nor possible to refer to these variables outside of their definition
scope (i.e, the nearest enclosing extended expression).

As a result, their implementation is optimized (for example, we know that these variables
cannot appear in the clause of a whenever so the run-time does not need to monitor their
assignments, they do not have a history, etc.). The cost of accessing a function’s local variable
is the same as accessing a function argument. Comparing to a global or local variable in
groups the gain in the memory footprint and in housekeeping the environment is noticeable.

Local variables are introduced using the keyword @local in the first statement of an
extended expression. Every variable that appears in the left-hand-side of an assignment
and whose name does not appear in a clause is assumed to be a global variable1.

Extended expressions can be nested (through if, loop, forall and switch expressions).
Each of these nested extended expressions may introduce their own local variables. A variable
local to an extended expression is visible only to the sub-expression of this extended expression.

The initial value of a local variable is <undef>. Then, the value referred by a local variable
is the last value assigned to this variable during the evaluation process. For example, with the
definition

@fun_def f($x)
{

@local $y
$y := $x * $x
$y := $y * $y
return $y + 1

}

the application of @f to x will compute x4 + 1. Notice that the value of a local variable
assignment, is, as for any assignment, the exe '0. So:

@fun_def g($x)

1There is no chance that function would refer to a local varible introduced by a compound action. As a
matter of fact, functions are defined at the top-level of the score, where only global variables are visible. Thus,
only global and local variables introduced by the extended expression can be referred to in a function body.

/Reference/compound_group/index.html#aborting-a-group
/Reference/compound_whenever/index.html

FUNCTION DEFINITION 277

{
@local $y
$y := 2*$x
$y := $y + 1

}

will return '0 when called with x. See section on exec values.
Notice, the right hand side of a function’s local variable assignment is an expression, not

an extended expression.

The return Statement

The value of an extended expression is the value of the last return encountered during the
evaluation. The return is not necessarily the last statement of the sequence. If there is no
return in the extended expression, the returned value is the value of the last expression in
the sequence. If there are multiple return at the same expression level, a warning is issued
and only the last one is taken into account.

For example:

@fun_def @print($x)
{

print $x
}

When applied to a value, this function will send the print message that would eventually
output the argument on the Max or PD console. We will see below that the value returned by
sending a Max message is the exec '0.

A common pitfall
A confusing point is that, contrary to some programming language, return is NOT a

control structure: it indicates the value returned by the nearest enclosing extended expression,
not the value returned by the whole function. Thus:

@fun_def pitfall($x)
{

if ($x) { return 0 }
return 1

}

is a function that always returns 1. As a matter of fact, the return 0 is the indication
of the value returned by the branch of the if, not the value returned by the body of the
function. However, function

@fun_def work_as_expected($x)
{

if ($x)

/Reference/7-scalar/index.html#exec-value
/Reference/9-functions/index.html#the-return-statement

278 CHAPTER 15. FUNCTIONS

{ return 0 }
else
{ return 1 }

}

returns 0 or 1 as expected, following the value of the argument $x, simply because the
value of the function body is the value returned by the if expression which is the value
returned by the function (the if is the last (and only) statement of the function body).

Extended Conditional Expressions and Iteration Expressions

Extended expressions enrich expressions using four constructs that mimic some action: loop,
forall, if and switch. The keywords used are the same used to specify the corresponding actions.
But the constructions described here are expressions, not actions:

• their sub-expressions involve extended expressions and not sequences of actions,

• their evaluation takes “no time” (they have zero-duration which is usually not the case
of the corresponding actions),

• they have no label,

• they have no synchronization attributes,

• they have no delays.

These expressions are qualified as pseudo-actions. They have been introduced in extended
expressions because loops can be used to specify iterative expressions, and conditionals are
useful for controlling the flow of an expression’s evaluation.

The Extended Expression If

The expression mimics the action If but its branches are extended expressions and it is not
possible to define a label or the other attributes of an action. This construction is equivalent
to the conditional expression

(cond ? exp_if_true : exp_if_false)

So it is mainly used because it improves readability (the branches are extended expressions
and may introduce their own local variables). The else branch is optional. If cond evaluates
to false and the branch is missing, the returned value is undef.

The Extended Expression Switch

The syntax of the switch expression follows mutatis mutandis the syntax of the switch
action. For instance, the Fibonacci recursive function can be defined by:

@fun_def fibonacci($x)
{

/Reference/compound_loop/index.html
/Reference/compound_forall/index.html
/Reference/compound_if/index.html
/Reference/compound_if/index.html
/Reference/9-functions/index.html#extended-expressions
/Reference/9-functions/index.html#extended-expressions
/Reference/7-scalar/index.html#the-undefined-value
/Reference/compound_if/index.html
/Reference/compound_if/index.html

FUNCTION DEFINITION 279

switch ($x)
{

case 0: return 1
case 1: return 1
case @<(1):

@local $x1, $x2
$x1 := $x - 1
$x2 := $x1 - 1
return @fibonacci($x1) + @fibonacci($x2)

}
}

Recall that there are two forms of the switch construction. In this example, we use the
form that compares the selector to the values ::antescofo 0 and 1. The third value is
a predicate2 which is applied to the selector, and if true, the attached expression (here an
extended expression) is evaluated. Here, for the sake of the example, the switchexpression
handles the integer 0, 1 and all integers strictly greater than 1.

The other form of switch does not rely on a selector: the expression after the case is
evaluated and if true, the corresponding expression (or extended expression) is evaluated.

The value of the switch expression is the value of the expression attached to the selected
case. If there is no matching case, the value returned by the is undef.

The Extended Expression Loop

The Loop expression mimics the action construction, but, as for the other pseudo-actions,
there are no delays or attributes. Furthermore, a loop expression has no period (because it
is supposed to have zero-duration), and it does not accept the during clause with a relative or
an absolute time: only a logical time, corresponding to an iteration count, is accepted in a
during clause.

The value of a loop is undef. Thus, a Loop expression is used for its side effects. For
example, the computation of the square root of a strictly positive number p can be computed
iteratively using the Newton’s formula3:

x0 = p, xn+1 = 1
2(xn + p

xn
)

by the following function:

@fun_def @square_root($p, $error)
{

@local $xn, $x, $cpt
$cpt := 0
$x := $p
$xn := 0.5 * ($x + 1)

2Here the predicate is the partial application of @< to 1. The result is a function that compares its argument
to 1. We use the infix notation of the relationnal operator < because partial applications are possible only on
prefix notation (and @< is the prefix notation of the infix <). See the curried functions section in this chapter.

3The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

/Reference/compound_if/index.html
/Reference/7-scalar/index.html#the-undefined-value
/Reference/compound_group/index.html#the-during-clause
/Reference/compound_group/index.html#the-during-clause
/Reference/7-scalar/index.html#the-undefined-value
/Reference/9-functions/index.html#curried-functions
http://en.wikipedia.org/wiki/Regular_expression

280 CHAPTER 15. FUNCTIONS

Loop
{

$x := $xn
$cpt := $cpt + 1
$xn := 0.5 * ($x + $p/$x)

} until (($cpt > 1000) || (@abs($xn -$x) < $error))

if ($cpt > 1000)
{ print "Warning: square root max iteration exceeded" }

return $xn
}

We stress the fact that a return inside the loop is useless. As explained before, a return is
not the indication of a non-local exit but the specification of the value returned by the nearest
enclosing extended expression. A return in the loop body will specify the value of the body,
which is then thrown away by the loop construct that always returns undef. This is why the
exit of the loop is controlled here by an until clause and a return at the end of the function
body is used to return the correct value.

The Extended Expression ForAll

This expression mimics the ForAll action. As an expression, it is used for its side-effect.
The expression makes iteration possible over the elements of a tab, a map, or a range of
integers. The return value is always undef.

Atomic Actions in Expressions

Some atomic actions, actions with zero-duration, are directly allowed in an extended expression:
messages, abort and assigment to a global variable. Such actions may have neither a label nor
other action attributes. The value of these actions in an extended expression is '0, that is,
the value returned by the action-as-expression, see section Action As Expression.

Note that one can launch an arbitrary action within a function body, using the EXPR {
... } construction. This construction is a backdoor that can be used to “inject” arbitrary
actions into the world of expressions4.

This possibility is not without danger because it introduces durative action into an instan-
taneous context. For example, it makes it possible to access a function’s local variable that no
longer exists:

@fun_def pitfall2()
{

@local $x
$x := 1
_ := EXPR { 1 print $x }
return $x

4In the reverse direction, it is possible to “inject” arbitrary expressions into the world of actions, using the
_:= exp construction which allows for the evaluation of a simple arbitrary expression without other additional
effects.

/Reference/9-functions/index.html#the-return-statement
/Reference/9-functions/index.html#the-return-statement
/Reference/9-functions/index.html#the-return-statement
/Reference/7-scalar/index.html#the-undefined-value
/Reference/compound_group/index.html#the-until-clause
/Reference/9-functions/index.html#the-return-statement
/Reference/7-scalar/index.html#the-undefined-value
/Reference/3-atomic/index.html
/Reference/exp_action/index.html

FUNCTION CALL EVALUATION STRATEGY 281

}
$res := @pitfall2()

will set the global variable $res to 1 but an error is signaled:

Error: Vanished local variable or function arguments bad access at line ...
Did you try to access an instantaneous variable from an action spanned in a function ?

Indeed, the action spanned in the function body happens one beat after the evaluation of
the function call itself, which is instantaneous. So when the action is performed, the local
variable corresponding to the call does not exist anymore.

Function Call Evaluation Strategy

Antescofo functions implement call-by-value strategy, but this must be tempered by the fact
that data-structures are referred to through a pointer. See the side page Argument Passing
Strategies. So, Antescofo functions can be impure (they can have side effects).

Argument evaluation order is not specified and is subject to change from one implementation
of the language to the other.

And Antescofo functions are strict: all arguments are fully evaluated before evaluating the
function body. (So, logical operators &&, || are not functions, they are specials forms.)

Functions as Values

In an expression, the @-identifier of a function denotes a functional value that can be used,
for instance, as an argument of higher-order functions (see for example functions [@map],
[@reduce], [@scan], etc.). This value is of type intentional function.

The @-identifier of a function is not the only way to denote a functional value. The partial
application of a function returns a function through a mechanism called currying, described in
the next paragraph.

Curried Functions

In Antescofo, intentional functions can be partially applied. Partial function application
says “if you fix the first arguments of the function, you get a function of the remaining
arguments”. This notion is related to that of curried functions, introduced and developed
by the mathematician Haskell Curry. The idea is seeing a function that takes n arguments
as equivalent to a function that takes only 1 argument, with 0 < p < n, and that returns a
function that takes n− 1 arguments5.

Consider for instance

5Sometimes a subtle distinction is made between currying and partial function applications. A curried
function is a function of arity 1 eventually returning a function which is also curried (expecting one argument).
In contrast, partial function application refers to the process of fixing a number p of arguments to a function of
arity n, producing another function of smaller arity n − p.

/Reference/argument_passing_strategies/index.html
/Reference/argument_passing_strategies/index.html
https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Eager_evaluation
/Reference/7-scalar/index.html#user-defined-functions
https://en.wikipedia.org/wiki/Partial_application

282 CHAPTER 15. FUNCTIONS

@fun_def @f($x, $y, $z) { $x + 2*$y + 3*$z }

This function takes 3 arguments, so

@f(1, 2, 3)

returns 14 computed as: 1+2∗2+3∗3. The idea of a curried function, or partial application,
is that one can provide less than three arguments to the function @f. For example

@f(11)

is a function still awaiting 2 arguments, y and z, to compute finally 11 + 2 ∗ y + 3 ∗ z. And
function

@f(11, 22)

is a function still awaiting one argument, z, to compute finally 55 + 33z.
Curried functions are extremely useful as arguments of higher-order functions (i.e., functions

taking other functions as arguments). An example has been given in the definition of
@fibonacci to provide a predicate to the case.

For a more appealing example, consider the function @find(t, f) that returns the
first index i such thaf(i, t[i]) is true. Suppose that we are looking for the first index whose
associated value is greater than a. The value a will change during the program execution.
Without relying on currying, one may write

@global $a
@fun_def @my_predicate($i, $v) { $v > $a }
...
$t := ... ; somme tab computation
$a := 3
$i := @find($t, @my_predicate)

But this approach is cumbersome: one has to introduce a new global variable and must
remember that the predicate works with a side effect and that the global variable $a must be
set before using @my_predicate. Using partial application, the corresponding program is
much simpler and does not make use of an additional global variable:

@fun_def @my_pred($a, $i, $v) { $v > $a }
...
$t := ... ; somme tab computation
$i := @find($t, @my_pred(3))

The expression @my_pred(3) denotes a function awaiting two arguments i and v to
compute v > 3, which is exactly what [@find] expects.

All user defined functions are implicitly curried and almost all predefined functions are
curried. The exceptions are the special forms and overloaded predefined functions that
take a flexible number of arguments, namely: [@dump], [@dumpvar], [@flatten], [@gnuplot],
[@is_prefix], [@is_subsequence], [@is_suffix], [@normalize], [@plot], [@rplot], and [@sort].
When a predefined function does not support partial application, an error message is emitted
when an incorrect application occurs.

TRACING FUNCTION CALLS 283

Tracing Function Calls

It is possible to (un)trace the calls to a function during the program run with the two predefined
functions: [@Tracing] and [@UnTracing]. The trace is emitted on Max or PD console (or on
the output specified by the --message option for the standalone).

The two predefined functions admit a variety of arguments:

• no argument: all user-defined functions are traced/untraced.

• the functions to trace/untrace: as in @Trace(@in_between, "@fib"), will trace/un-
trace the call and the returns to the listed functions. Notice that the function to (un)trace
can specified with their name or via a string.

• a tab that contains the functions to (untrace through their name or through strings.

Here is an example:

@fun_def @fact($x) { if ($x < 1) { 1 } else { $x * @fact($x-1) } }
_ := @Tracing(@fact)
_ := @fact(4)

which generates the following trace:

+--> @fact($x=4)
| +--> @fact($x=3)
| | +--> @fact($x=2)
| | | +--> @fact($x=1)
| | | | +--> @fact($x=0)
| | | | +<-- 1
| | | +<-- 1
| | +<-- 2
| +<-- 6
+<-- 24

Infix notation for function calls

A function call is usually written in prefix form:

@drop($t, 1)
@scramble($t)

It is possible to write function calls in infix form, as follows:

$t.@drop(1)
$t.@scramble()

The @ character is optional in the naming of a function in infix call, so we can also write:

284 CHAPTER 15. FUNCTIONS

$t.drop(1)
$t.scramble()

This syntax is reminiscent of the function/method call in SuperCollider. The general form
is:

arg\ensuremath{_1} . @fct(arg\ensuremath{_2}, arg\ensuremath{_3}, ...) ; or more simply
arg\ensuremath{_1} . fct(arg\ensuremath{_2}, arg\ensuremath{_3}, ...)

The argi are expressions. Notice that the infix call, with or without the @ in the function
name, is not ambiguous with the notation exe.$x used to refer to a variable $x local in a
compound action from the exe of this action, because the name of a function cannot start
with the $ character.

The infix notation is less general than the prefix notation, because in the prefix notation,
the function can be given by an expression. For example, functions can be stored into an array
and then called following the result of an expression:

$t := [@f, @g]
; ...
($t[$x])()

will call @f or @g following the value of the variable $x. This cannot be achieved with the
infix syntax: only function names (with or without @) are accepted in the infix notation, not
expressions. In addition, a function without arguments cannot be called in infix form.

The use of this notation will become apparent with the notion of method presented in
chapter Actors.

Process

Sequences of actions, such as the body of a group, of a whenever, of a loop, etc., are the
specification of a thread of execution6 owning its own temporal properties and managed
independently by the run-time. An Antescofo process simply abstracts this notion by parame-
terizing a sequence of actions. A process can be instantiated multiple times by giving a value
to the parameters (aka process call).

Processes are similar to functions: after its definition, a function can be called to compute
a value from its body (an expression). After its definition, a process can be called and run
from its body which is a group of actions. This group is called the instantiation of the process.
Notice that there can be several instantiations of the same process that run in parallel.

Processes can be defined using the @proc_def construct. For instance,

@proc_def ::trace($note, $d)
{

print begin $note
$d print end $note

}

6See the notion of exec and coroutine. A sequence of actions may span multiples threads, e.g. the body of a
loop or of a whenever.

/Reference/actors/index.html
/Reference/compound_group/index.html
/Reference/compound_whenever/index.html
/Reference/compound_loop/index.html
/Reference/7-scalar/index.html#exec-value
/Reference/7-scalar/index.html#exec-value
/Reference/compound_loop/index.html
/Reference/compound_whenever/index.html

PROCESS 285

Figure 15.2: metronom

286 CHAPTER 15. FUNCTIONS

The name of the process denotes a proc value (see Proc Values), and is used to call the
process.

Calling a Process

A process call is a mechanism similar to a function call: its parameters are expressions listed
between parentheses and their values are bound to the arguments before running the body.

A process can be called as an action or as an expression.

Calling a Process as an Action

Here, calling a process is an action:

NOTE C4 1.3
::trace("C4", 1.3)
; more actions

NOTE D3 0.5
::trace("D3", 0.5)

In the previous code, the process is referred to through its name, a ::-identifier, so it is
apparent that a process is called. But the call can also be indirect, as in:

NOTE C4 1.3
$x := ::trace
:: $x ("C4", 1.3) ; calling the process assigned to $x

the process ::trace is a value (of type proc) assigned to variable $x. To call the
process refered by $x, we use the syntax :: expression (...) where expression must
evaluated to a proc.

A process call is a compound action equivalent to the insertion of the process body at the
place of call as a group. So the previous code fragments launch the following behavior:

NOTE C4 1.3
group trace_body1 {

print begin "C4"
1.3 print end "C4"

}
; more actions

NOTE D3 0.5
group trace_body2 {

print begin "D3"
0.5 print end "D3"

}

/Reference/7-scalar/index.html#proc-values
/Reference/7-scalar/index.html#proc-values
/Reference/7-scalar/index.html#proc-values

RECURSIVE PROCESS 287

Calling a Process as an Expression

A process can also be called in an expression with the same syntax. The instantiation
mechanism is similar: a group starts and runs in parallel. However, an exec value is returned
as the result of the process call. See section exec value. This value refers to the running group
lauched by the process instanciation. It can be used in the computation of the surrounding
expression.

The exec value corresponding to the process instance can also be accessed within the process
body itself through a special variable

$MYSELF

This variable is read-only and is managed by the run-time.
Calling a process in an expression does not require the :: marker, that is the expression:

antescofo $x(1, 2, 3) can be either a process call or a function call, depending on the
value of $x. It causes no trouble. The :: keyword is mandatory only in actions, because
allowing the syntax of function calls would lead to ambiguities in the specification of actions.

Recursive Process

A process may call other processes and can be recursive, calling itself directly or indirectly.
For instance, an infinite loop

Loop L 10
{

; actions ...
}

is equivalent to a call of the recursive process defined by:

@proc_def ::L()
{

Group iterate { 10 ::L() }
; actions ...

}

The group iterate is used to recursively launch the process without disturbing the timing
of the actions in the loop body. In this example, the process has no arguments.

Process as Values

A process definition is a proc value and can be the argument of another process. For example:

@Proc_def ::Tic($x) {
$x print TIC

/Reference/7-scalar/index.html#exec-value
/Reference/7-scalar/index.html#proc-values

288 CHAPTER 15. FUNCTIONS

}

@proc_def ::Toc($x) {
$x print TOC

}

@proc_def ::Clock($p, $q) {
:: $p(1)
:: $q(2)

2 ::Clock($p, $q)
}

A call ::Clock(::Tic, ::Toc) will print TIC one beat after the call, then TOC one
beat after the latter, and then again at date 3, at date 4, etc.

Aborting a Process

The actions spanned by a process call constitute a group. It is possible to abort all groups
spanned by the calls to a given process using the process name:

abort ::P

will abort all the active instances of ::P. The active instances of the process are the
instantiation of the process body that are still alive.

It is possible to kill a specific instance of the process using its exec value:

$p1 := ::P()
$p2 := ::P()
$p3 := ::P()
; ...
abort $p2 ; abort only the second instance
abort ::P ; abort all remaining instances

Using the special variable $MYSELF , it is possible to implement self-destruction on a
specific condition e:

@proc_def ::Q()
{

@local $PID
$PID := $MYSELF
; ...
whenever (e) { abort $PID }
; ...

}

The value of $MYSELF is stored in the local variable $PID because the value of $MYSELF
is the exec value of the immediatly surrounding group. If we replace$PID with $MYSELF in
the whenever, we kill the running instance of the whenever body, not the process instance.

/Reference/7-scalar/index.html#alive-and-dead-exec
/Reference/exp_variable/index.html

PROCESSES AND (LOCAL) VARIABLES 289

Processes and (local) Variables

Processes are defined at the top-level. So, the body of the process can only refer to global
variables and to local variables introduced in the body. The process parameters are implicit local
variables but other local variables can be introduced explicitly using the [@local] statement.

Process parameters are local variables

The parameters of a process are local variables that are initialized with the value of the
arguments given in the process call. These variables are local to the process instance. These
variables can bet set in the process body, as in:

@proc_def ::P($x)
{

whenever ($x == $x) {
print "$x = " $x

}
; ...
1 $x := $x + 1

}

One beat after the call ::P(0), the text $x = 2 appears on the console: the variable $x
local to this process instance has been incremented by one which has triggered the whenever
outputting the message. We stress that values are passed to the process, not variables or
expressions, which is sometime a cause of pitfalls, see paragraph What to Choose Between
Macro, Functions and Processes.

Other than the initialization, there is no difference at all between the process parameters
and a local variable introduced explicitly using @local statement.

Local variables

Variables that are defined @local to a process are defined per process instance: they are not
shared with the other calls. One can access a local variable of a specific instance of a process
through the exec value of this instance, using the dot notation:

@proc_def DrunkenClock()
{

@local $tic
$tic := 0
Loop (1. + @random(0.5) - 0.25)
{ $tic := $tic + 1 }

}
$dclock := ::DrunkenClock()
; ...
if ($dclock.$tic > 10)
{ print "Its 10 passed at DrunkenClock time" }

/Reference/11-macros/index.html#what-to-choose-between-macro-functions-and-processes
/Reference/11-macros/index.html#what-to-choose-between-macro-functions-and-processes

290 CHAPTER 15. FUNCTIONS

The left hand side of the infix operator . must be an expression whose value is an active
exec. The right hand side is a variable local to the referred exec. If the left hand side refers to
a dead exec (cf. exec), the evaluation of the dot expression raises an error.

In the previous example an instance of ::DrunkenClock is recorded in variable $dclock.
This exec is then used to access to the variable $tic which is local to the process. This
variable is incremented with a random period varying between 0.75 and 1.25.

Accessing a local variable through the dot notation is a dynamic mechanism and the local
variable is looked first in the instance referred by the exec, but if not found in this group, the
variable is looked up in the context of the exec, i.e. in the instance of the group that has
spanned the process call, and so on, climbing up the nesting structure (in case of recursive
process, this structure is dynamic) until the variable is found. If the top-level context is
reached without finding the variable, the <undef> value is returned and an error message is
issued.

Dynamically Scoped Variable

This mechanism is useful to dynamically access a variable defined in the scope of the call. For
example:

@proc_def ::Q($which) { print $which ": " ($MYSELF.$x) }

$x := "x at top level"

Group G1 {
@local $x
$x := "x local at G1"
::Q("Q in G1")

}

Group G2 {
@local $x
$x := "x local at G2"
::Q("Q in G2")

}

::Q("Q at top level")

will print:

Q in G1: x local at G1
Q in G2: x local at G2
Q at top level: x at top level

Assignment using the dot notation

The reference of an instance of a process can be used to assign a variable local to a process
from the outside, as for example in:

/Reference/7-scalar/index.html#exec-value

PROCESS, TEMPO AND SYNCHRONIZATION 291

@proc_def ::P()
{

@local $x
whenever ($x} { print "$x has changed for the value " $x }
; ...

}
$p := ::P()
; ...
$p.$x := 33

the last statement will change the value of the variable $x only for the instance of ::P
launched at line 7 and this will trigger the whenever at line 4.

Notice that the features described here specifically for a process instance work for any exec
(see sections Action As Expression and exec value).

Process, Tempo and Synchronization

The tempo of a process can be fixed at its definition using a tempo attribute:

@proc_def ::P() @tempo := ...
{ ... }

In this case, every instance of ::P follows the specified tempo. If the tempo is not specified
at the process definition, then the tempo of an instance is implicitly inherited from the call
site (as if the body of the process was inserted as a group at the call site).

For example:

Group G1 @tempo := 60 { Clock(::Tic, ::Tic) }
Group G2 @tempo := 120 { Clock(::Toc, ::Toc) }

will launch two clocks, one ticking every second, the other one tocking two times per second.
If not explicitly specified, the tempo of a process instance is inherited from the call site.

This is also true for the other synchronization attributes (targets, strategies, etc.).

Actors

Actors are built on processes to provide autonomous objects that can react to external signals
and able to answer requests initiated from other program parts. Actors do not belong to the
Antescofo core: they do not add fundamental mechanisms, they rather provide syntactic sugar
for the sake of the programmers and they are internally rewritten as processes. They are
described in chapter actors.

/Reference/compound_whenever/index.html
/Reference/exp_action/index.html
/Reference/7-scalar/index.html#exec-value
/Reference/actors/index.html

292 CHAPTER 15. FUNCTIONS

Chapter 16

Macros

Figure 16.1: clock mechanism

Functions are used to abstract some variables over an expression and to repeatedly evaluate
this expression with a change to the value referenced by these abstracted variables. Processes
play a similar role, with a group of actions instead of an expression.

Macros can play both roles because the abstracted object is a text without a priori
semantics. The mechanisms is then more primitive but may have some advantages. Refer to
the side page Macro versus Function versus Process for a comparison of the three constructs.
Usually, if a process or a function can do the same job as a macro, there are advantages to
using them over macros and you should give them priority.

Macro Definition and Usage

Macro definitions are introduced by the @macro_def keyword. Macros are called by their
@-name followed by their arguments between parentheses.

293

/Reference/macro_function_process_comparison/index.html

294 CHAPTER 16. MACROS

@macro_def @b2sec($beat) { $beat / (60. * $RT_TEMPO) }

A call to a macro is simply replaced by its definitions and given arguments in the text of
the score: this process is called macro-expansion and is performed before program execution.
The macro-expansion is a syntactic replacement that occurs during the parsing and before
any evaluation. Macros are thus evaluated at score load and are NOT dynamic. The body of
a macro can call other macros but macros cannot be recursive1.

Macro names are @-identifiers. For backwards compatibility reasons, a simple identifier can
be used in the definition but the @-form must be used to call the macro. Macro arguments
are formal parameters using $-identifiers (but they are not variable!). The body of the macro
is between braces. The white spaces, tabulation and carriage-returns immediately after the
open brace and immediately before the closing brace are not part of the macro body.

The following code shows a convenient macro called @makenote that simulates the
Makenote objects in Max/Pd. It creates a group that contains a note-on with pitch $p,
velocity $vel sent to a receive object $name, and triggers the note-off after duration $d.
The two lines inside the group are Max/PD messages and the group puts them in a single
unit and enables polyphony or concurrency.

@macro_def @makenote($name, $p, $vel, $dur)
{

group myMakenote
{

$name $p $vel
$dur $name $p 0

}
}

The figure below shows the above definition with its realization in a score as shown in
AscoGraph. The call to the macro can be seen in the text window on the right, and its
realization on the graphical representation on the left. Since Macros are expanded upon the
loading of the score, you can only see the expansion results on the graphical end of AscoGraph
and not the call.

Notice that in a macro-call, the white-spaces and carriage-returns surrounding an argument
are removed. But “inside” the argument, one can use it:

@macro_def @delay_five($x)
{

5 group {
$x

}
}
@delay_five(

1 print One
2 print Two

)

results in the following code after score is loaded:

1A recursive macro definition will lead to an infinite expansion.

/Reference/compound_group/index.html

EXPANSION SEQUENCE 295

Figure 16.2: Example of a Macro and its realisation upon score load

5 group {
1 print One
2 print Two

}

Macros can accept zero arguments. In this case, there is no list of arguments at all:

@macro_def @PI { 3.1415926535 }
let $x := @sin($t * @PI)

Expansion Sequence

The body of a macro @m can contain calls to other macros, but they will be expanded after
the expansion of @m. Similarly, the arguments of a macro may contain calls to other macros,
but beware that their expansion takes place only after the expansion of the enclosing call. So
one can write:

@macro_def apply1($f,$arg) { $f($arg) }
@macro_def concat($x, $y) { xy }
let $x := @apply1(@sin, @PI)
print @concat(@concat(12, 34), @concat(56, 78))

which results in

let $x := @sin(3.1415926535)
print 1234 5678

The expression @sin(3.1415926535) results from the expansion of @sin(@PI) while
234 5678 results from the expansion of @concat(12, 34)@concat(56, 78). In the
later case, we don’t have 12345678 because after the expansion the first of the two remaining

296 CHAPTER 16. MACROS

macro calls, we have the text 1234@concat(56, 78) which is analyzed as a number followed
by a macro call, hence two distinct tokens2.

When a syntax error occurs in the expansion of a macro, the location given refers to the
text of the macro and is completed by the location of the macro-call site (which can be a file
or the site of another macro-expansion).

Generating New Names

The use of macro often requires the generation of new names. As an alternative, consider
using local variables that can be introduced in groups. Local variables enable the reuse of
identifier names and are visible only within their scope.

Howevever, local variables are not always a solution. In this case, there are two special
macro constructs that can be used to generate fresh identifiers:

@UID(id)

is substituted by a unique identifier of the form idxxx where xxx is a fresh number (unique
at each invocation). id can be a simple identifier, a $-identifier or an @-identifier. The token

@LID(id)

is replaced by the idxxx where xxx is the number generated by the last call to @UID(id).
For instance

loop 2 @name := @UID(loop)
{

let @LID($var) := 0
; ...
superVP speed @LID($var) @name := @LID(action)

}
; ...
kill @LID(action) of @LID(loop)
; ...
kill @LID(loop)

is expanded in (the number used here is for the sake of the example):

loop 2 @name := loop33
{

let $var33 := 0
; ...
superVP speed $var33 @name := action33

2This behavior differs, for instance, from the behavior of the macro-processor used for C or C++ where
1234@concat(56,78) would have been expansed into 12345678. The difference is that cpp-macro expansion
takes place before any parsing, at the raw level of the stream of characters, while Antescofo macro-expansion
take place during the parsing, as a phase of the lexical analysis at the level of the stream of tokens.

GENERATING NEW NAMES 297

}
; ...
kill action33 of loop33
; ...
kill loop33

The special constructs @UID and @LID can be used everywhere (even outside a macro
body).

If the previous constructions are not enough, there are some tricks that can be used to
concatenate text. For example, consider the following macro definition:

@macro_def @Gen($x, $d, $action)
{

group @name := Gengroup$x
{

$d $action
$d $action

}
}

Note that the character $ cannot be part of a simple identifier. So the text Gengroup$x
is analyzed as a simple identifier immediately followed by a −identifier.Duringmacro −
expansion, thetext‘Gengroupxwill be replaced by a token obtained by concatenating
the actual value of the parameter $xto Gengroup‘. For instance

@Gen(one, 5, print Ok)

will expand into

group @name := Gengroupone
{

5 print Ok
5 print Ok

}

Another trick is to know that comments are removed during the macro-expansion, so you
can use comment to concatenate text after an argument, as with the C preprocessor:

@macro_def @adsuffix($x) { $x/**/suffix }
@macro_def @concat($x, $y) { xy }

With these definitions,

@addsuffix($yyy)
@concat(3.1415 , 9265)

is replaced by

$yyysuffix
3.14159265

298 CHAPTER 16. MACROS

What to choose between macro, functions and processes

Capitalizing some code fragment to reuse it several times raises the recurring questions: should
we use a macro, a function or a process? The side page Macro versus Function versus Process
compares the three mechanisms. If the purpose of the code fragment is to produce a value, in
the same instant as the call, then a function should be considered. If it is to perform actions,
especially actions that take time, then a process should be considered. In other cases, such
as if the code fragment must be parameterized by a variable name, then a macro must be
considered.

The last point deserves some development. Consider the following process definition:

let $myVar := 0

@proc_def ::P($x)
{

whenever ($x) {
; do something

}
}

::P($myVar)
; ...
let $myVar := 1

If the intention of the programmer is to activate the whenever in the process ::P each
time the variable $myVar is set, the previous approach is incorrect: the whenever in ::P
is activated each time the local variable $x is set. When the process is called, the argument
is evaluated and it is the value of $myVar which is passed to the process, not the variable
itself3. This is why a process can be called with constant arguments:

::P(0)

With this call, it is apparent that the whenever in ::P watches the local variable $x
because there is no other variable involved.

To achieve the intended behavior, the name of the variable to watch must explicitly appear
in the condition of the whenever. Macros are handy for that, because they are expanded
literally:

let $myVar := 0

@macro_def @P($x)
{

whenever ($x) {
; do something

}
}

3See the side note argument passing strategies for more details.

/Reference/macro_function_process_comparison/index.html
/Reference/argument_passing_strategies/index.html

WHAT TO CHOOSE BETWEEN MACRO, FUNCTIONS AND PROCESSES 299

@P($myVar)
; ...
let $myVar := 1

is expanded into

let $myVar := 0

whenever ($myVar) {
; do something

}
; ...
let $myVar := 1 ; this time, "do something" will be triggered

which achieves the desired behavior.

300 CHAPTER 16. MACROS

Chapter 17

Actors (objects)

Figure 17.1: melophone

The notion of an object is now widespead in programming. This concept is used to organize
code by gathering values together into a state and making the possible interactions with this
state explicit through the notion of methods.

A related and less popular notion is the concept of an actor. The actor model of programming
was developed in the begining of the ’70s with the work of Carl Hewitt and languages like
Act. Later, Actor programming languages included the Ptolemy programming language and
languages offering “parallel objects” like Scala or Erlang.

While objects focus on reuse with mechanisms like inheritance, method subtyping, state
hidding, etc., actors focus on the management of concurrent activities of autonomous entities.

In Antescofo we use the words object or actor interchangably to refer to some kind of
process used to encapsulate a state and to the concurrent, parallel and timed interactions with
this state. The specification of these objects and the interactions with them are supported
by some specific syntactic constructs. However, these dedicated constructions are internaly
rewritten in more fundamental mechanims of functions, processes and whenever statements.

This chapter supposes a knowledge of the notions of objects and methods. The next section
compares the notion of object with the notion of process. Then we describe the Antescofo
notion of actors.

301

302 CHAPTER 17. ACTORS (OBJECTS)

Introduction: Process as Object

A process instance can be used as a kind of autonomous entity encapsulating some data. In
fact, a running process can be seen as an object or as an actor:

• a process instance is similar to the instance of a class: the process is the class and calling
a process corresponds to class instantiation;

• the interval of time between the process call and the process end corresponds to the
lifetime of the object;

• the exe of the instance corresponds to a reference to the object;

• the state of the object corresponds to the values of the local variables of the process
instance;

• interactions with the object can be achieved by assigning its local variable (see dot
notation).

Local variable assignments act as messages and in response to a message that it receives, a
running process can make local decisions, create more processes, send more messages, and
determine how to respond to the next message received.

For example, suppose we want to design an object of a class channel supposed to control
some audio channel. The object iterates periodically over a list of parameters to be sent to a
harmonizer. During the object lifetime, it is possible to add a new parameter and to reset the
parameter list. We can implement this notion through a process ::channel. By assigning
the local variable $velocity, a new parameter is added to the list. By assigning it to 0, this
list is reset to its initial value.

@proc_def ::channel($ch, $init, $period)
{

@local $velocity, $tab, $i
$velocity := 0

$tab := $init
$i := 0

whenever ($velocity == 0)
{ $tab := init }

whenever ($velocity != 0)
{ _ := @push_back($tab, $velocity) }

Loop $period
{

$i := ($i + 1) % @size($tab)
@command{ "harmo" ++ $ch} ($tab[$i])

}
}
; ...

/Reference/10-process/index.html#assignment-using-the-dot-notation
/Reference/10-process/index.html#assignment-using-the-dot-notation

ACTORS 303

$p0 := ::channel(0, [12, 15], 1)
$p1 := ::channel(1, [10, 8, 9, 11], 1.5)
; ...

$p0.$velocity := 7
; ...

The dot notation is efficient but does not make the interactions with the object (running
process) apparent. Functions can be used to make these interactions more explicit. Suppose
we want to simultaneously change the period and reset the parameter list to its initial value.
We can write a function:

@fun_def reset($pid, $per)
{

$pid.$period := $per
$pid.$velocity := 0

}

then we can call the function :

@reset($pid, 1.5)

and using the infix notation for function calls introduced in section Infix Notation for
Function Calls:

$pid.reset(1.5)

This last form is in line with the usual notation used to call an object’s method: we ask
the object (specified through its exe $pid) to perform the method with parameter 1.5.

Actors

The previous idea — relying on processes to achieve a kind of concurrent object oriented
programming — is pushed further with the @obj_def construction. An @obj_def definition
is internally expanded into a process definition and into function definitions following the line
sketched by the previous example. So, there is no fundamentally new mechanism involved.
However, the dedicated syntax makes the programming more readable and reusable.

An obj definition is introduced by the keyword @obj_def and consists in a sequence of
clauses. The order of the clause may be relevant. A clause of a given type may appear several
times in an object definition. There are 8 kind of clauses, introduced by a keyword:

• @local introduces the declaration of the fields (also known as the attribute) of the
object.

• @init defines a sequence of actions that will be launched at object instantiation.

/Reference/9-functions/index.html#infix-notation-for-function-calls
/Reference/9-functions/index.html#infix-notation-for-function-calls

304 CHAPTER 17. ACTORS (OBJECTS)

• @method_def or @fun_def specifies a new method, i.e. a function that can be run on
a specific obj. Such method are also named instance method or object method because
they involve a specific instance of an object. The body of a method is an extended
expression.

• @proc_def specifies a new method, which is similar to the previous construction, except
that the body of a routine is a sequence of actions (not an extended expression). These
methods are sometimes called routines. They can have a duration and multiple instance
of the same routine can be simultaneously active for the same object.

• @broadcast declares a function that performs simultaneously on all instances of an
object.

• @whenever introduce a daemon which triggers a sequence of actions when some logical
expression becomes true.

• @react is similar to the previous construct but triggers the evaluation of an extented
expression when some logical expression becomes true.

• @abort defines an abort handler that will be triggered when the object is killed.

An object definition plays a role similar to a class in object-oriented programming, except
that there is no notion of class inheritance in the current Antescofo version. Another difference
is that objects run “in parallel” and their actions are subject to synchronization with the
musician or on a variable, they can be performed on a given tempo, etc. As a matter of fact,
as previously mentioned, objects are processes with some syntactic sugar.

{!BNF_DIAGRAMS/object_def.html!}
(click here for a larger view)
After a motivating example, we will detail the various clauses of an object definition.

A Basic Example

Here is a first example of an object definition:

@obj_def Metro($p, $receiver)
{

@local $period, $trigger, $body

@init {
$trigger := false
$body := 0

}

@whenever ($trigger)
{

$body := { Loop $period { @command($receiver) TOP } }
}

A BASIC EXAMPLE 305

@init {
$period := $p
$trigger := true

}

@broadcast reset()
{

abort $body
$period := $p
$trigger := true

}

@method_def current_period() { return $period }
@method_def set_period($x) { $period := $x }

@abort { print "object " $THISOBJECT "is killed" }
}

The object is called obj::Metro and corresponds to a new type of value. This type is a
subtype (a specialization) of proc. It can be instantiated by giving the expected arguments
for the object creation. These arguments are specified between parentheses after the object’s
name.

$metro1 := obj::Metro(2/3, "left_channel")
$metro2 := obj::Metro(1, "right_channel")

An object of type obj::Metro is created with an initial period. The purpose of this
object is to send a message TOP to a receiver each period. The loop implementing the
periodic emission of the TOP is triggered by a whenever controlled by a field (a local variable)
$trigger. The exec of this loop is saved in field $body and used to abort the loop when
the broadcast @reset is emitted.

Two methods are provided: @set_period is used to change the value of the period (the
change is taken into account at the end of the current period) and @current_period is
used to query the period actually used by a obj::Metro. The broadcast @reset can be
used to reset the period of all running instances of a to their initial value (the value given at
creation time). Here are some examples:

_ := $metro1.set_period(2 * $metro2.current_period())

sets the period of the first object to twice the period of the second object. All periods are
reset calling the broadcast:

_ := @reset()

Note that a broadcast corresponds to an ordinary function. This function launches simulta-
neously, for all active instances, the code associated to the broadcast.

Notice that the definition specifies two @init clauses: the first one takes place before the
@whenever and initializes the fields of the object. The second @init clause is used to launch
the loop when the object is created and after the start of the @whenever.

/Reference/7-scalar/index.html#proc-values
/Reference/compound_whenever/index.html

306 CHAPTER 17. ACTORS (OBJECTS)

An object lives “forever”. It can be killed and the command abort. When killed, the object
will execute its abort handler. In the example, the abort handler uses the system variable
$THISOBJ that refers, in the scope of an object clause, to the current instance of the object.

In the next paragraphs, we detail the various clauses present in an object definition.

Field Definition: @local

The clause has the same syntax as the declaration used to introduce local variables in a
compound action. Here each “local variable” is used as a field of the object and corresponds
to a local variable in the process that implements the object. The values of the fields/local
variables represents the state of the object. Antescofo is a dynamically typed programming
language, so the fields of an object have no specified type and can hold any kind of values in
the course of time.

Several @local clauses can be defined and their order and placement is meaningless.
Object fields are present from the start and initialized with the undef value.

Note that the argument of an object corresponds to implicitly defined fields. So, in the
previous example, the state of the object is given by 5 variables: the initial period $p, the
receiver $receiver, the current period $period, a control variable $trigger and the exec
to the running loop that implements the object behavior $body.

A reference to a field may appear anywhere in a clause and always refers to the corresponding
local variable. A variable identifier that is not declared as a local variable, refers to a global
variable.

Performing an Action at the Object Construction: @init

Fields are initialized in @init clauses. Init clauses are interleaved with @whenever clauses
and this order is preserved in the implementation, which makes possible to control the order
of evaluation and the triggering of the whenever clauses.

In our example, the assignment of $trigger in the second @init clause will trigger the
@whenever previously defined.

Specifying an Object Method: @method_def and @proc_def

Methods are functions or processes that are associated to an object. They represent some
behaviors specified as

• an expression: such methods are introduced by the keyword :::atescofo @method_def
or equivalently by @fun_def (because such methods are similar to functions);

• or a sequence of actions: such methods are introduced by the keyword @proc_def
because such methods are similar to processes). Such methods are called routines when
we want to distinguish them from the previous type of methods.

Methods are called on objects and may involve some additional arguments. They have
several advantages over bare functions or processes:

/Reference/7-scalar/index.html#the-undefined-value

SPECIFYING AN OBJECT METHOD: @METHOD_DEF AND @PROC_DEF 307

• A method can be overloaded, that is, the same method name can be used for a different
object.

• When called, a method checks implicitly that is is called on a live instance of an object.

• When called, a method checks implicitly that is is called on an object of the expected
type.

• A method has direct access to the object’s fields.

These benefits come at some cost:

• A method can be called only through the infix call notation. A side consequence is that
a method call is an expression (even if the method is a routine).

• Methods are not values, they are just simple names. For instance, you cannot pass them
as arguments1.

Ambiguity Between a Method Call and a Function Call in Infix Form

There is a possible ambiguity between infix function calls and method calls. This ambiguity
arises if a function @f is defined and takes a first argument (an object) on which a method f
is also defined. Then the call

obj . f (a\ensuremath{_i})

is ambiguous: is it a method call to f or a function call @f(obj, ai)?
In this case, the rule is to call the method (if obj is alive). If you want to call the function,

use the @-identifier in the call:

obj . @f (a\ensuremath{_i})

Calling a Method on a Dead Object

If a method is called on a dead process, Antescofo looks for an ordinary function with the
same identifier. If this function exists, it is called with the same arguments, instead of calling
the method. If this function does not exist, an error is signaled.

Here is an example

@obj_def obj::Account()
{

@local $deposit
@init { $deposit := 0 }
@fun_def credit($x) { $deposit := $deposit + $x }
@fun_def debit($x) { $deposit := $deposit - $x }

}

1However, you can apply them partially and use the partial application as a value (the value is of type
(partially applied) function.

308 CHAPTER 17. ACTORS (OBJECTS)

@fun_def @credit($x)
{ print "cannot credit a non-longer existant account" }

; ...
$joe := obj::Account()
_ := $joe.credit(100)

; ...
abort $joe

; ...
_ := $joe.credit(100)

The last assignment will trigger the evaluation of :::atescofo @credit(100) because
$joe no longer exists. Notice that methods are called using the _ := action, because they
are expressions. They have the same status as a function call. So they cannot appear directly
as actions.

Calling a Method on an Object of Incorrect Type

Method calls check that the method is defined on the object given as an argument. If this not
the case, then a function with the same name is looked at and applied on the arguments. If
such function does not exist, an error is signaled.

Calling a Method Within a Method

All method calls in the object definition which refer to the current object instance can be
written in an abbreviated infix form that omits the receiver:

. method_name(a\ensuremath{_1}, a\ensuremath{_2}, ...)

instead of

$THISOBJ . method_name(a\ensuremath{_1}, a\ensuremath{_2}, ...)

the special variable $THISOBJ refers to the object instance on which the method is called,
see below). Obviously, the full syntax to call a method must be used if the receiver is not the
current instance.

Accessing Object Fields in Methods

An object’s field can be accessed directly through its $-name in the body of a method, as
showed in the example by the body of the method credit. It is always possible to access to
an object’s field from “outside its methods” through the dot notation:

obj . $field

where obj is an expression evaluating to the object reference (an exec).

REFERRING TO THE OBJECT: $THISOBJ 309

Local variables in methods

Methods defined through @fun_def are specified using extended expressions. Such an
expression may introduce local variables.

Routines are defined through a sequence of actions that may involve local variables. These
variables are local to the routine instance (they cannot be accessed by others methods nor
other routines). Actions in the routine body may have duration. Thus, several instances of
the same routine may be active at the same moment.

Referring to the object: $THISOBJ

The variable $THISOBJ may appear in method definitions, where it refers to the object on
which the method is applied, or in the clauses of an object definition, where it refers to the
current instance.

This variable is special: it has a meaning only in the scope of a method or in the clauses of
an object. It cannot be watched by a whenever. Assigning this variable leads to unpredictable
result.

In a method body, a reference to an object field

$THISOBJ . $field

can be abbreviated in

$field

and a method called on the same object

$THISOBJ . method (...)

can be abbreviated in

. method_name(a , a , ...)

Specifying a Broadcast: @broadcast

Each broadcast clause defines a function with the same name. The syntax is similar to that
of a function definition, except that it is introduced by the keyword @broadcast. Calling
this function will execute the body of the function for each active instance of the object. The
value returned is undef.

Here is an example where a broadcast is used to count the number of instances:

@global $MyObj_count

@obj_def MyObj()
{

/Reference/9-functions/index.html#extended-expressions
/Reference/compound_whenever/index.html
/Reference/7-scalar/index.html#the-undefined-value

310 CHAPTER 17. ACTORS (OBJECTS)

@broadcast count() { $MyObj_count := $MyObj_count + 1 }
}

@fun_def countMyObj()
{

$MyObj_count := 0
@count()
return $MyObj_count

}

; ...
$number_alive_MyObj := @countMyObj()

A global variable $MyObj_count is used to add the number of instances. In the body of
the broadcast, the fields of the object are accessible. A function @countMyObj is defined to
reset the global variable, to broadcast the counting method and to return the result. This
approach can be used to implement any function that do a global operation over all instances
of an object.

Admittedly, using a global variable to share information between the various applications
and the object instances can be troublesome. The broadcast mechanism will be extented to
face this kind of problem in the next version of the language.

Specifying a Reaction: @whenever and @react

@whenever and @react clauses can be used to define the triggering of some actions or some
expressions when some logical conditions occur. They are similar to (and implemented by) a
whenever.

This construct makes it possible to define daemons that automatically respond to some
events. There are two ways to do this. To launch actions, the syntax is:

@whenever(expression) { actions }

and to launch an extended expression, the syntax is

@react(expression) { extended_expression }

The second version is appropriate if the reaction consists in state update and instantaneous
computations. The first form can be used to launch child processes and other durative actions.
Note that because some actions are allowed in extended expressions, it is often possible to use
one both forms interchangably. In either case, it is possible to use termination guards as in

@react($x == $x) { $cpt := $cpt + 1 } until ($cpt > 3)

Patterns can be used to define complex condition in time.
Nota Bene: there is a daemon active for each object’s instance.

/Reference/patterns/index.html

SPECIFYING AN ABORT HANDLER: @ABORT 311

Specifying an Abort Handler: @abort

The @abort clauses are gathered together and are launched when an object instance is killed.
Object instances “live forever” (until a stop command) and they must explicitly be killed by
an abort action.

Checking the Type of an Object: @is_obj and @is_obj_xxx

An instance of an object is implemented by a process, so it is of the exec type and the predicate
[@is_exec] returns true on an object.

The predicate @is_obj can be used to distinguish between exec (object instances and
process instances and more generally, instances of compound actions).

In addition, each time an object obj::xxx is defined using @obj_def, a predicate
@is_obj_xxx is automatically defined. This predicate returns true if its argument is an
object instance of obj::xxx.

Object Instantiation

An instance of an object is created using a syntax similar to that of a process call2:

$metro1 := obj::Metro(2/3, "left_channel")

creates an object of type obj::Metro with a parameter $p that sets to 2/3 and a
parameter $receiver that sets to "left_channel".

When an object is created, the @init clauses and the reaction clauses are performed in
the order of their definition. Then, the object is alive and ready to interact. Interactions can
happen through

• method calls,

• broadcasts,

• direct assignments of the object fields (using dot notation)

• changes in logical condition of reactions

• and killing the object.

Concurrency Between Method Applications

Methods defined by @fun_def are evaluated instantaneously. In accordance with the syn-
chrony hypothesis, their runs “cannot overlap” and correspond implicitly to atomic region. So
there is no need to use semaphore, mutex or any other dedicated mechanism to implement
mutual exclusion between method applications: mutual exclusion is given automatically.

2and is actually implemented by a process call

/Reference/atomic_termination/index.html
/Reference/7-scalar/index.html#exec-value
/Reference/10-process/index.html#assignment-using-the-dot-notation
/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages
/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Mutual_exclusion

312 CHAPTER 17. ACTORS (OBJECTS)

Routine executions may persist in time. So, two routines called on the same object may run
in parallel and may concurrently access the same fields. This may lead to consistency problems.
However, sequences of atomic actions without delay are always executed instantaneously and
in mutual exclusion with other such sequences: they are natural critical sections.

Object Expansion into Processes and Functions

The previous constructions are internally expanded in a process definition and in several
function definitions, so there are no new evaluation mechanisms involved with the object
constructions. However, they help in structuring the score3.

Keep in mind that an object, like any other process, can be synchronized. In particular,
object inherits their synchronization from the synchronization strategy defined at their creation.

3Objects are a new feature in Antescofo and are expected to evolve to integrate new mechanisms: we plan to
integrate reactions linked to the reception of OSC messages, object fields shared by all instances, the unification
of the broadcast mechanism with a map-reduce mechanism. In the long term, we want to develop inheritance
mechanisms and the specification of more sophisticated concurrency constraints between routines.

https://en.wikipedia.org/wiki/Critical_section

Chapter 18

Patterns

Figure 18.1: header figure

Patterns are a simple way to define complex logical conditions to be used in a whenever. A
pattern is a sequence of atomic patterns that describe the evolution through time of logical
conditions. There is three kinds of atomic patterns: Note, Event and State.

Such a sequence is defined and then used as the condition of a whenever to trigger some
actions every time the pattern matches. It can represent a neume, that is a melodic schema
defining a general shape but not necessarily the exact notes or rhythms involved. It can also
be used in broader contexts involving not only the pitch detected by the listening machine,
but also arbitrary variables.

Warning: The notion of pattern used here is very specific and the recognition algorithm
departs from the recognition achieved by the listening machine. Patterns define an exact
pattern of variation in time (variation of variable’s values) while the listening machine recognizes
the most probable variation (of the audio signal) from a given dictionary of musical events.
The latter relies on signal processing probabilistic methods. The former relies on algorithms
like those used for recognizing regular expressions in string matching. So the pattern matching
available here is not relevant for the audio signal, even if it can have some applications.

Note: Patterns on Score

The basic idea is to react to the recognition of a musical phrase defined in a manner similar to
event’s specification. For example, the statement:

@pattern_def pattern::P
{

Note C4 0.5
Note D4 1.0

313

/Reference/compound_whenever/index.html
/Reference/compound_whenever/index.html
https://en.wikipedia.org/wiki/Regular_expression

314 CHAPTER 18. PATTERNS

}

defines a pattern that can be used later as the argument of a whenever:

whenever pattern::P
{

print "found pattern P"
}

The pattern Note is an atomic pattern and the @pattern_def defines and gives a name
to a sequence of atomic patterns.

In the current version, the only events recognized are Note: chords, trill, etc. cannot be
used (see however the other kinds of atomic patterns below). Contrary to the notes in the
score, the duration may be omitted to specify that any duration is acceptable.

Pattern Variables

To be more flexible, patterns can be specified using local variables that act as wildcards:

@pattern_def pattern::Q
{

@local $h

Note $h
Note $h

}

The pattern Note matches a note in the input followed by the listening machine. The
pattern pattern::Q defines a repetition of two successive notes with the same pitch (their
respective duration do not matter).

The wildcard, or pattern variable $h, is specified in the clause at the beginning of the
pattern definition using a @local declaration. Every occurrence of a pattern variable must
refer to the same value. Here, this value is the pitch of the detected note (given in midicents).

Pattern variables are really local variables and their scope extends to the body of the
whenever that uses this pattern. So they can be used to parametrize the actions to be
triggered. For example:

whenever pattern::Q
{

print "detection of the repetition of pitch " $h
}

Specifying Duration

A pattern variable can also be used to restrict durations in the same manner. The value of a
duration is the value given in the score (and not the actual duration played by the musician).

/Reference/compound_whenever/index.html

NOTE: PATTERNS ON SCORE 315

Specifying Constraints

There are two parameters for a note: its pitch and its duration. These parameters may be
specified by

• a constant

• a pattern variable specifying an unknown value determined at matching time

• an (ordinary) variable specifying a specific value (the value of the variable at matching
time)

For pitches, the constant is an integer or the ratio of two integers, or a symbolic note. These
constants specify the expected pitch in midicents.

For duration, the constant specifies the expected duration in raltive time (in beat) or in
absolute time (in second with the s unit appended or in millisecond with ms appended).
Notice however that such specification is probably useless: there is few chance that the actual
note duration is exactly equal to the specified one.

A pattern variable can be used as a kind of wildcard. Declared using an :::atescofo
@local declaration, the variable takes its actual value with the matching of its first occurrence.
The following occurrence of the variable constraint the corresponding matching to take the
same value.

An ordinary Antescofo variable can be used to specify a pitch or a duration. In this case,
only a note with the specified pitch or duration is matched by the note pattern. The specified
value is the value of the variable at the time of matching and this value can be changed
dynamically (with an assignment). This mechanism can be used to adapt a pattern to a given
context.

Here is an example involving ordinary variables in a pattern :

@pattern_def pattern::R
{

Note $X
Note C4 $Y

}

specifies a sequence of two notes. The first one must have a pitch equal to the value of the
variable $X (at the time where the pattern is checked). The pitch of the second one is C4,
and the duration of the first is irrelevant while the duration of the second must be equal to
the value of $Y. As for $X, this variable is updated elsewhere and the value considered is its
value at the time where the pattern is checked. These two variables are recognized as ordinary
variables and not as pattern variables, because they are not declared with a @local in the
scope of the pattern.

Additional constraints on the matching can be specified through a where clause which
specifies a logical expression which must be true for the matching to succeed:

@pattern_def pattern::R
{

@local $h, $dur1, $dur2

316 CHAPTER 18. PATTERNS

Note $h $dur1 where $h > 6300
Note $h $dur2 where $dur2 < $dur1

}

specifies a sequence of two successive notes such that:

• their pitch is equal and this value in midicents is the value of the local variable $h;

• $h in midicents is higher than 6300;

• and the duration :::atescofo $dur2 of the second note must be lower than the
duration :::atescofo $dur1 of the first note.

The logical expression after the where is an arbitrary expression. If it involves variables,
the value of these variables is the value of the variable at the time of matching.

Pattern Causality

In a clause, all pattern variables used must have been set before. For example, it is not possible
to refer to $dur2 in the where clause of the first note: the pattern recognition is causal
which means that the sequence of pattern is recognized “on-line” in time from the first to the
last without guessing the future.

However, it is easy to postpone a antescofo::: where clause to an event where all
pattern variables have been set. For example, writing:

@pattern_def pattern::R
{

@local $h, $dur1, $dur2

Note $h $dur1 where ($h > 6300) && ($dur2 > 0.5)
Note $h $dur2 where $dur2 < $dur1

}

One can also write

@pattern_def pattern::R
{

@local $h, $dur1, $dur2

Note $h $dur1 where $h > 6300
Note $h $dur2 where ($dur2 < $dur1) && ($dur2 > 0.5)

}

A Complete Example

The pattern

EVENT ON ARBITRARY VARIABLES 317

@pattern_def pattern::M
{

@local $h, $dur

Note $X $dur
Note $h $dur where $dur > $Y
Note C4

}

defines a sequence of 3 notes. The first note has a pitch equal to $X (at the moment
where the pattern is checked); the second note has an unknown pitch referred to by $h and a
duration $dur which is the same as the duration of the first note. In addition, this duration
must be greater than the current value of the ordinary variable $Y; and finally, the third note
as a pitch equal to C4.

Event on Arbitrary Variables

From the listening machine perspective, a ::atescofo Note is a complex event to detect
in the sequence of samples of the audio input. But from the pattern matching perspective, a
Note is an atomic event that can be detected looking only on the system variables $PITCH
and $DURATION managed by the listening machine.

It is then natural to extend the pattern-matching mechanism to look after any variable.
This generalization from any variable is achieved using the pattern Event:

@pattern_def pattern::Gong
{

@local $x, $y, $s, $z

Event $S value $x
Event $S value $y at $s where $s > 110
Before [4]

Event $S value $z where [$x < $z < $y]
}

The keyword Event is used here to specify that the event we are looking for is an update
in the value of the variable $S1. We say that $S is the watched variable of the pattern.

An Event pattern is another kind of atomic pattern. Note and Event patterns can be
freely mixed in a @pattern_def definition.

Four optional clauses can be used to constrain an Event pattern:

1. The before clause is used to specify a temporal scope for looking at the pattern.

2. The value clause is used to give a name or to constrain the value of the variable
specified in the at matching time.

1A variable may be updated while keeping the same value, as for instance when evaluating let $S := $S.
Why $S is updated or what it represents does not matter here. For example, $S can be the result of some
computation in Antescofo to record a rhythmic structure. Or $S is computed in the environment using a pitch
detector or a gesture follower and its value is notified to Antescofo using a setvar message.

318 CHAPTER 18. PATTERNS

3. The at clause can be used to refer elsewhere to the time at which the pattern occurs.

4. The where clause can be used to specify additional logical constraint.

The Before clause must be given before the Event keyword. The last three clauses can
be given in any order after the specification of the watched variable.

Contrary to the Note pattern, there is no “duration” clause because an event is point wise
in time: it detects the update of a variable, which is instantaneous.

The value Clause

The value clause used in an Event is more general than that used in a Note pattern: it
accepts a pattern variable or an arbitrary expression. An arbitrary expression constrains the
value of the watched variable to be equal to the value of this expression2. A pattern variable
is bound to the value of the watched variable. This pattern variable can be used elsewhere in
the pattern.

The at Clause.

An at clause is used to bind a local variable to the value of the $NOW variable when the match
occurs. This variable can then be used in another clause, e.g. to assert some properties about
the time elapsed between two events or in the body of the whenever.

Unlike in a :::atescofo value clause, it is not possible to directly specify a value for
the clause but this value can be tested in the clause:

@pattern_def pattern::S
{

@local $s, $x, $y

Event $S at $s where $s==5 ; cannot write directly: Event $S at 5
Event $S at $x
Event $S at $y where ($y - $x) < 2

}

Note that it is very unluckily that the matching time of a pattern is exactly “5”. Notice
also that the date is expressed in absolute time.

The where Clause

As for patterns, a clause is used to constraint the parameters of an event (value and occurrence
time). It can also be used to check any property that must hold at the time of matching. For
example: in the clause:

@pattern_def pattern::S
{

2To achieve the same effect in a Note pattern, you need to use the where clause: a pattern variable is used
to bind the pitchor the duration value and then the logical expression is checked in the where clause.

/Reference/compound_whenever/index.html

EVENT ON ARBITRARY VARIABLES 319

Event $S where $ok
}

will match an update of $S only when $ok is true.

The before Clause

For a pattern q that follows a pattern p, the before clause can be used to relax the temporal
scope on which q is looked for.

When Antescofo is waiting to match the pattern q =Event $X, it starts to watch the
variable right after the match of the previous pattern p. Then, at the first value change of
$X, Antescofo checks the various constraints on q. If the constraints are not met, the matching
fails.

The before clause can be used to shrink or to extend the temporal interval on which the
pattern is matched beyond the first value change. For instance, the pattern

@pattern_def pattern::twice
{

@local $x
Event $V value $x
Before [3s] Event $V value $x

}

is looking for two updates of variable $$V for the same value $x in less than 3 seconds.
Nota bene that other updates may occur but $V must be updated for the same value before 3
seconds have elapsed for the pattern to match.

If we replace the temporal scope [3s] by a logical count [3#], we are looking for an
update for the same value that occurs in the next 3 updates of the watched variable. The
temporal scope can also be specified in relative time [3].

Notice that a before clause cannot be achieved using an at clause with a where clause;
pattern twice

@pattern_def pattern::twice2[$x]
{

@local $x, $s1 $s2
Event $V value $x at $s1
Event $V value $x at $s2 where ($s2 - $s1) <= 3

}

pattern::twice2 does not match the same thing as pattern::twice because for
pattern::twice2 the two matched events are two successive updates of $V.

When the temporal scope of a pattern is extended beyond the first value change, it is
possible that several updates occurring within the temporal scope satisfy the various patterns’
constraints3. However, the pattern matching stops looking for further occurrences in the same

3If there is no before clause, the temporal scope is “the first value change” which implies that there is at
most one match.

320 CHAPTER 18. PATTERNS

temporal scope after having found the first one. This behavior is called the single match
property.

For instance, if the variable $V takes the same value three times within 3 seconds, say at
the dates t1 < t2 < t3, then pattern::twice occurs three times as (t1, t2), (t1, t3), and
(t2, t3). Because Antescofo stops to look for further occurrences when a match starting at a
given date is found, only the two matches (t1, t2) and (t2, t3) are reported.

Finally, notice that the temporal scope defined in an event starts with the preceding event.
So a before clause on the first of a pattern sequence is meaningless and actually forbidden
by the syntax.

Watching Multiple Variables Simultaneously

It is possible to watch several variables simultaneously: the event occurs when one of the
watched variable is updated (and if the constraints are fulfilled). For instance:

@pattern_def pattern::T
{

@local $s1, $s2

Event $X, $Y at $s1
Event $X, $Y at $s2 where ($s2 - $s1) < 1

}

is a pattern looking for two successive updates of either $X or $Y in less than one second.
Notice that when watching multiple variables, it is not possible to use a value clause.

A Complex Example

As mentioned, it is possible to freely mix and patterns, for example to watch some variables
after the occurrence of a musical event:

@pattern_def pattern::T
{

@local $d, $s1, $s2, $z

Note D4 $d
Before [2.5] Event $X, $Y at $s1
Event $Z value $z at $s2 where ($z > $d) && $d > ($s2 - $s1)

}

Note that different variables are watched after the occurrence of a note D4 (6400 midicents).
This pattern is waiting for an assignment to variable $X or $Y in an interval of2.5 beats after
a note D4, followed by a change in variable $Z for a value such that the duration of D4 is
greater than the interval between the changes in $X or $Y, and such that the value of $Z is
also greater than this interval.

STATE PATTERNS 321

State Patterns

The Event pattern corresponds to a logic of signal: each variable update is meaningful and
a property is checked instantaneously on a given point in time. This contrasts with a logic of
state where a property is looked on an interval of time. The State pattern can be used to
face such case.

A Motivating Example

Suppose we want to trigger an action when a variable takes the value 0 for at least 2 beats.
The following pattern:

Event $X value 0

does not work because the constraint “at least 2 beats” is not taken into account. The
pattern matches every time $X takes the value 0.

The pattern sequence

@local $start, $stop
Event $X value 0 at $start
Event $X value 0 at $stop where ($stop - $start) >= 2

is no better: it matches two successive updates of $X that span over 2 seconds. It would
not match three consecutive updates of for the same value 0, one at each beat, a configuration
that should be recognized. In addition, converting the absolute duration into relative time is
difficult because it would require tracking every tempo change in the interval.

This example shows that is not an easy task to translate the specification of a state that
lasts over an interval into a sequence of instantaneous events. This is why, a new kind of
atomic pattern has been introduced to match states. Using a :::atescofo state pattern,
the specification of the previous problem is easy:

State $X where $X == 0 during 2

matches an interval of 2 beats where the variable constantly has the value 0 (irrespectively
of the variable updates).

Five optional clauses can be used to constrain a state pattern:

1. The before clause is used to specify a temporal scope for looking the pattern.

2. The start clause can be used to refer elsewhere to the time at which the matching of
the pattern has started.

3. The stop clause can be used to refer elsewhere to the time at which the matching of
the pattern stops.

4. The where clause can be used to specify additional logical constraints.

5. The during clause can be used to specify the duration of the state.

322 CHAPTER 18. PATTERNS

The before clause must be given before the event keyword. The others can be given in
any order after the specification of the watched variable. There is no value clause because
the value of the watched variable may change during the matching of the pattern, for instance
when the state is defined as “being above some threshold”.

The first three clauses are similar to those described for an event pattern, except that the
at is split into the start and the stop clauses because here the pattern is not instantaneous;
it spans over an interval of time.

The initiation of a state Pattern

Contrary to note and event, the pattern is not driven solely by the updates of the watched
variables. So the matching of a state is initiated immediately after the end of the previous
matching.

The during Clause

The optional during clause is used to specify the time interval on which the various constraints
of the pattern must hold. If this clause is not provided, the state finishes to match as soon
as the constraint becomes false.

The figure below illustrates the behavior of the pattern

@Refractory r

State $X during d where $X > a
Before [s]

State $X where $X > b

The schema assumes that variable $X is sampling a continuous variation.

Figure 18.2: state pattern with during, before and @refactory clauses

The first pattern is looking for an interval of length d where $X is constantly greater than
a.

PATTERN COMPILATION 323

The second pattern must start to match before s beats have elapsed since the end of the
previous pattern (the allowed time zone is in green). The match starts as soon as it is greater
than b.

The second pattern finishes its matching as soon as it becomes smaller than b because
there is no specification of a duration.

With the sketched curve, there are many other possible matches corresponding to postponing
the start of the first state while still maintaining $X > b. Because the start time of these
matches are all different, they are not ruled out by the single match property. A refractory
period is used to restrict the number of successful (reported) matches.

Limiting the Number of Matches of a Pattern

The refractory period is defined for a pattern sequence, not for an atomic pattern. The clause
must be specified at the beginning of the pattern sequence just before or after an eventual
@local clause.

This clause specifies the period after a successful match (of the whole pattern) during which
no other matches may occur. This period is given in absolute time and counted starting from
the end of the successful match. The refractory period is represented in red in the above figure.
The effect of a refractory period is to restrict the number of matching per time interval.

Pattern Compilation

Patterns are not a core feature of the language: internally they are compiled in a nest of
whenever, conditionals and local variables. If verbosity is greater than zero, the [printfwd]
command reveals the result of the pattern compilation in the printed score.

Two properties of the generated code must be kept in mind:

1. Causality: The pattern compiler assumes that the various constraints expressed in a
pattern are free of side-effects and the pattern matching is achieved on-line, that is,
sequentially in time and without assumptions about the future.

2. Single match property: When a pattern sequence occurs several times starting at
the same time t, only one pattern occurrence is reported4.

Pattern semantics and pattern compilation are detailed in Real-Time Matching of Antescofo
Temporal Patterns.

4Alternative behaviors may be considered in the future.

/Reference/compound_whenever/index.html
https://hal.archives-ouvertes.fr/hal-01054667
https://hal.archives-ouvertes.fr/hal-01054667

324 CHAPTER 18. PATTERNS

Figure 18.3: magnetic harpsychord

Chapter 19

Additional Elements

In this chapter, we present some additional elements of the Antescofo language that do not fit
in the previous chapters:

• the track mechanism which allows the disabling of some messages during a program run;

• the splitting of a large score into several files;

• the evaluation that can be performed when a score is loaded.

Tracks

A track refers to all actions that have a label of some form and to the message whose head
has some form. A track is defined using a statement:

@track_def track::T
{

print, "synth.*"
}

refers to all actions that: (1) have a label or a label that matches (i.e. any name that starts
with the prefix) and (2) all Max or PD messages whose receivers satisfy the same constraints
and (3) the children of these actions (recursively).

More generally,

• a track definition is a list of tokens separated by a comma;

• a token is either a symbol (an identifier without double-quotes) or a string;

• a symbol refers to labels or receivers equal to this symbol;

• a string denotes a regular expressions1 (without the double quote) used to match a label
or a receiver name;

1The syntax used to define the regular expression follows the posix extended syntax as defined in IEEE Std
1003.2, see for instance regular expression on Wikipedia.

325

/Reference/tracks/index.html
/Reference/file_structure/index.html#writing-an-augmented-score-through-multiple-file
/Reference/eval_load/index.html
http://en.wikipedia.org/wiki/Regular_expression

326 CHAPTER 19. ADDITIONAL ELEMENTS

• an action belongs to a track if there is a symbol in the track equal to the label of the
action or if there is a regular expression that matches the label;

• in addition, a Max or PD message belongs to the track if the receiver’s name fulfills the
same constraint;

• in addition, an action nested in a compound action belonging to the track also belongs
to the track;

• an action may belong to several tracks (or none);

• there is a maximum of 32 definable tracks.

Tracks can be muted or unmuted:

antescofo::mute track::T
antescofo::unmute track::T

A string can be also used for the name of the track:

antescofo::mute "track::T"
antescofo::unmute "track::T"

which means that the track to mute or unmute can be computed dynamically:

$tracks := ["track::T", "track::Harmo", "track::Synthe", "track::Reverb"]

whenever ($track_to_mute == $track_to_mute)
{

antescofo::mute ($tracks[$track_to_mute])
}

Tracks are muted/unmuted independently. An action is muted if it belongs to a track that
is muted, otherwise it is unmuted. A muted action has the same behavior as an unmuted
action except for messages: their arguments are evaluated as usual but the final shipping to
Max or PD is inhibited. It is important to note that muting/unmuting a track has no effect
on the Antescofo internal computations, only in the sending of messages.

For example, to inhibit the sending of all messages, one can define the track:

@track_def track::all { ".*" }

and mute it:

antescofo::mute track::all

FILE STRUCTURE OF AN ANTESCOFO SCORE 327

File Structure of an Antescofo Score

Writing an augmented score through multiple files

A simple Antescofo augmented score is written in a single text file. However, for large scores,
places where one wants to make underlying organization explicit, or places some procedures
or score elements are reused in several pieces, an Antescofo augmented score may be specified
in several scores.

There is always a main file from which the additional files will be loaded. The file loaded
in Max/PD or used as the last argument in a standalone command task will be read as the
main file.

From the main, other files are loaded using the @insert directive:

@insert macro.asco.txt
@insert "file name with white space must be quoted"

The @insert keyword can be capitalized (@INSERT) as can any other predefined @-
keyword (@local, @target, etc.). Beware not to confuse the @insert directive used to
include a text file at score loading time and the [@insert] function.

The @insert command is often used to store definitions and initializations of the main
Antescofo score in alternate files. So several setups may coexist with the main score.

The @insert_once command is similar to @insert directive except that the file is
included only once in the current score, when the directive is encountered the first time. This
behavior makes possible to include a library of primitives in set of files without the burden to
take care of the dependencies.

Load and Preload Command

A file is loaded through a load message sent to the Antescofo object (in Max or PD). The
argument of this message is the path of the file to load. The effect of this command is to abort
the current computations (if any) and to load the specified file which becomes the current
score. The previous score, if any, is simply thrown away with all of its definitions: definitions
are not shared between two score loads.

A file can also be preloaded using the command preload file name. The fileargument
is the path of a file while nameis a simple identifier to refer to the score in future command.

Preloaded scores are used to defines functions, processes, actors, data structures: the
definitions in a preloaded score are added to the currently known definitions. So they are in
use for the next preloads and for the (final) load. A preload does not define a current score.
So, the usual workflow is to preload a set of files with a final load.

Preloaded scores can also contain definitions of musical events to follow. During the program
execution, one can switch from the current score to the score defined by a preloaded score using
the start name command with name refering to a preloaded score. A start command
without name simply starts the current score.

The start name command can be issued from the Antescofo program itself using the
antescofo::start action. This will keep the program state (variables values, processes,
etc.) but divert the listening machine to follow the new specified score.

328 CHAPTER 19. ADDITIONAL ELEMENTS

Evaluation at Score Loading Time

When a score loads, some expressions can be evaluated and some actions can be performed.
This makes it possible to pre-compute some data or to run some initialization before the real
running of the program.

Constant Expressions

Constant expressions are expressions whose values do not depend on context and are indepen-
dent of the date at which the expression is evaluated.

Determining if an expression is a constant expression is difficult. But Antescofo detects a
large subset of constant expressions and evaluates them when the score is loaded. The idea is
to speed up the actual program run as much as possible by doing some evaluations beforehand.

So for instance

let $x := 1 + @sin(3.1415)

is internally rewritten in

let $x := 1.00009

Expression with variables are not constant expression (even if there no assignment in
scope, variables can be assigned externally using setvar and their value is always supposed
unknown). The application of a user-defined functions is not a constant expression like the
impure predefined functions.

Constant expressions are detected in actions. However, it is also possible to write constant
expressions in a BPM specification.

BPM (1.1*120)

This seems useless but it combines well with macro-definition:

@macro_def @BaseTempo { 120 }
; ...
BPM @BaseTempo
; ...
BPM (@BaseTempo + 10)

Which makes it possible to change the base tempo of a piece by changing only the macro-
definition.

@eval_when_load Clause

A @eval_when_load clause specifies a list of actions that must be performed just after
loading a file and before the run of the program. Several such clauses may exist in a file: they

/Reference/atomic_command/index.html
/Library/Functions/00intro/index.html#side-effect

AUTO-DELIMITED EXPRESSIONS 329

are performed in the order of appearance right after having completed the parsing of the full
score.

Such a clause can be used, for instance, to read some parameter saved in a file or to
precompute some values. For example

@fun_def fib($x)
{

if ($x < 2) { return 1 }
else { return @fib($x-1) +@fib($x-2) }

}

@eval_when_load {
$fib36 := @fib(36)

}

; ...

NOTE C4
print $fib36

When this file is loaded, the clause is evaluated to compute @fib(36) which takes a
noticeable amount of time because it is uses a doubly recursive function. This value is
then used when the program is started and the C4 event occurs, without requiring a costly
computation. If not for evaluation at load time, the performance would be interrupted by
complex computations like this one.

By using [@insert], [@insert_once], [@eval_when_load] and the Antescofo preload com-
mands, together with functions [@dumpvar], [@loadvar], [@loadvalue] and [@savevalue], one
can manage a library of reusable functions and reusable setups mutualized between pieces.

Auto-Delimited Expressions

{!BNF_DIAGRAMS/closed_expr.html!}
Expressions appear everywhere to parameterize actions (and actions may appear in expres-

sions, cf. Action As Expression). This may cause some syntax problems. For example, when
writing:

print @f (1)

there is a possible ambiguity: it can be interpreted as the message with two arguments (the
function @f and the integer 1) or it can be the message with only one argument (the result of
the application of function @f to the argument 1). This kind of ambiguity appears in other
places, as for example in the specification of the list of breakpoints in a curve.

The cause of the ambiguity is that there is no separator between the arguments of a
messages. So we don’t know where the expression starting by @f finishes.

The example here shows a more general problem which leads us to distinguish a subset of
expressions: auto-delimited expressions are meaningful expressions that cannot be “extended”
with what follows. Integers, for example, are auto-delimited expressions. We can write

/Reference/exp_action/index.html

330 CHAPTER 19. ADDITIONAL ELEMENTS

print 1 (2)

without ambiguity: this is the message with two arguments because there is no other
possible interpretation. Variables are another example of auto-delimited expressions.

Being auto-delimited is a sophisticated property involving the type of the actual value of the
expressions. So, the Antescofo approach is to accept a simple syntactic subset of expressions
to avoid possible ambiguities in the places where this is needed. This subset is defined by the
syntax diagrams given above.

For example:

$x + 3 print BAD // syntax error: x + 3 is not auto-delimited
($x + 3) print OK // parenthetized expressions are always auto-delimited

To disambiguate our first example, we can also use parentheses:

print (@f (1)) // is interpreted as the print of one argument: (@f(1))
print @f (1) // is interpreted as the print of one argument: (@f(1))
print (@f) (1) // is interpreted as the print of two arguments: @f and 1

The second form is interpreted as only one argument, because a functional constant is
useless as an argument in a message sent to the environment. But the third form shows how
to force the alternative interpretation.

Returns to chapter Expression

Simple Expressions

Simple expressions are divided into several categories

Constant Values

Boolean Constants

{!BNF_DIAGRAMS/bool_expr.html!}

Numeric Constants

Integers, decimals and scientific notation can be used to define a numeric constant.
{!BNF_DIAGRAMS/constant_expr.html!}

Data Structure Definition

Tab Definition by Enumeration

{!BNF_DIAGRAMS/tabdef_expr.html!}

SIMPLE EXPRESSIONS 331

Tab Definition by Comprehension

{!BNF_DIAGRAMS/tabcomprehension_expr.html!}

Map Definition

{!BNF_DIAGRAMS/map_expr.html!}

Nim Definition

cexp means closed expression
Continuous NIM
{!BNF_DIAGRAMS/nim_expr.html!}
Discontinuous NIM
{!BNF_DIAGRAMS/dinim_expr.html!}

Tab Access

{!BNF_DIAGRAMS/tab_expr.html!}

Variables and Variables Management

{!BNF_DIAGRAMS/var_expr.html!}

Infix Unary Expressions

{!BNF_DIAGRAMS/unary_expr.html!}

Infix Binary Expressions

Arithmetic, relational and logical binary operators.
{!BNF_DIAGRAMS/binary_expr.html!}

Conditional

{!BNF_DIAGRAMS/conditional_expr.html!}

Infix Predicates

{!BNF_DIAGRAMS/predicate_expr.html!}

Function Application and Process Call

{!BNF_DIAGRAMS/apply_expr.html!}

/Reference/auto_delimited/index.html

332 CHAPTER 19. ADDITIONAL ELEMENTS

Action As Expression

{!BNF_DIAGRAMS/action_expr.html!}
Returns to chapter Expression

Macro vs. Function vs. Process

How do you chose between macros, functions and processes?
These three mechanisms can be used to abstract a code fragment and to parameterize it by

argument provided when the code fragment is reused (at a call point). However, these three
mechanisms don’t have the same benefits, flexibilities or shortcomings.

The following figure compares the three mechanisms from several points of view (click for
access the table as a PDF document). See also the paragraph What to Choose Between Macro,
Functions and Processes for additional advice.

/Reference/11-macros/index.html#what-to-choose-between-macro-functions-and-processes
/Reference/11-macros/index.html#what-to-choose-between-macro-functions-and-processes

ARGUMENT EVALUATION STRATEGIES 333

Argument evaluation strategies

Programming languages through the years have introduced several strategies to determine
when and how to evaluate the argument of a routine call (by a routine, we mean a sequence

334 CHAPTER 19. ADDITIONAL ELEMENTS

of code that can be called with parameters like functions, procedures, methods, processes,
coroutines, etc.). When a routine is called, its code is run with the parameters substituted
by the actual arguments provided during the call. What differs is the exact nature of the
substitution.

Call-by-value replaces the parameters in the routine body with the value of the arguments.
In other words, the expressions in arguments are evaluated and this value is bound to the
routine’s parameters seen as local variables of the routine. Thus, the callee cannot modify
a value referred to by the caller through its argument. This strategy is the most common
strategy, used in C, Scheme, etc.

Call-by-reference replaces the parameters by a reference to the value of the arguments.
The reference is handled transparently in the routine body, where parameters are used like local
variables. This strategy allows a routine to alter a value refered by the caller. This strategy is
available in Pascal, Fortran, C++ (using a reference for the type of the parameter), etc.

Call-by-name replaces the parameters in the routine body with the expressions given
as actual arguments. This strategy is not very common in programming languages (Algol60
introduced it), but corresponds to the macro mechanism, with the exception of the time of
evaluation (calling-by-name is interleaved with evaluation, while macros are textual substitu-
tions done before any evaluation, which may lead to differences when a routine definition can
be the product of the evaluation).

This categorization is blurred by the nature of the programming languages: declarative (e.g.
purely functional) or imperative, the type system (if any; consider the C++ approach where
arguments are passed by values, but a reference type exists), the representation of values (if
all values are “boxed” and implemented as pointers to boxes, the call by value cannot be
distinguished from the call by reference), and additional mechanisms (like lazy evaluation,
memoization or futures and promises), etc.

Antescofo Evaluation Strategy

Antescofo implements call-by-value for functions, process and objects; and Antescofo macros
implement textual substitution, which loosely corresponds to call-by-name.

However, nota bene that Antescofo data structures, i.e. tab, map, nim and string, are
implemented through a reference to an underlying memory area. So, for instance, a tab may
be shared between the caller and the callee even if the call is by value. This ends up with
a behavior like call-by-reference for data structures. This behavior “call-by-value where the
value is a reference” is common: this is for instance the behavior in C, C++ or Java.

The following example illustrates this point. Consider the following process and variable
definitions:

@proc_def ::P($a, $b)
{

let $b := $b + 1
let $a[0] := $b

}

$t := [3, 1, 2]
$x := 10

https://en.wikipedia.org/wiki/Parameter_(computer_programming)
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Memoization
https://en.wikipedia.org/wiki/Futures_and_promises
/Reference/8-data/index.html

ARGUMENT EVALUATION STRATEGIES 335

the corresponding data layout:

Figure 19.1: data layout

Then, the call

::P($t, $x)
print $t
print $x

will produce:

[11, 2, 1]
10

The evaluation is sketched in the following diagram

Figure 19.2: call by value 1

The value of $t is copied into the parameter $a but this value is a reference to an underlyng
memory zone where the tab is actually stored. So, when the first element of the tab is updated
in the process, this is visible in the value referenced by $t. On the other hand, $x still refers

336 CHAPTER 19. ADDITIONAL ELEMENTS

to the value 10 because this value is fully copied into parameter $b and a subsequent change
does not affect the value refered by $x.

Consider now the call:

::P($t + [10, 20, 30], $x+1)
print $t
print $x

it will produce:

[3, 2, 1]
10

The values referred to by $t and $x are untouched by the evaluation of ::P which is
sketched in the following diagram:

Figure 19.3: call by value 2

This time, the values in the caller are unaffected by the execution of ::P. As a matter
of fact, expression $t + [10, 20, 30] creates a new tab and it it this new tab that is
mutated by the element assignment in the process. The consequence is that the value refered
by $t remains unaltered.

As a final example, examine the following expression:

::P(@sort($t), $x)
print $t
print $x

GRAMMAR OF OBJECT DEFINITIONS 337

it will produce:

[11, 2, 3]
10

This time, the argument @sort($t) modifies the tab referred by $t in place and returns
its argument. So the tab processed by ::P is also the tab referred by $t.

Figure 19.4: call by value 3

Notice that the previous examples involve processes but the same behavior is achieved with
functions. Nota bene that scalars are never modified through a function or a process call.

Grammar of object definitions

{!BNF_DIAGRAMS/object_def.html!}

Antescofo Workflow

Antescofo programs strongly interact with the environment through the listening machine, but
also through messages send through the Max/PD patch. These interactions happen during the
performance, but also at previous phases of the Antescofo workflow, when editing or debugging
the score and during rehearsals. Messages understood by Antescofo are described in section
internal commands. The User’s guide also contains three useful sections on:

• Editing the score

/Reference/atomic_command/index.html
/UserGuide/workflow_editing/index.html

338 CHAPTER 19. ADDITIONAL ELEMENTS

• Interacting with MAX/PureData

• and Preparing the Performance, Rehearsals.

/UserGuide/workflow_rehearsal/index.html

Chapter 20

Acknowledgements and credits

The Antescofo documentation was written by Jean-Louis Giavitto with the help of Arshia
Cont, Julia Blondeau and José Echeveste. Sam Wiseman revised the first version of the
manual during an internship.

Antescofo was born out of a collaboration between a researcher (Arshia Cont), a composer
(Marco Stroppa), and a saxophonist Claude Delangle for the world premier of . . . of Silence in
late 2007. Antescofo is particularly grateful to composer Marco Stroppa, the main motivation
behind its existence and his continuous and generous intellectual support. Since 2007, many
composers and computer musicians have joined the active camp to whom Antescofo is always
grateful: Pierre Boulez, Philippe Manoury, Gilbert Nouno, Serge Lemouton, Larry Nelson,
José Miguel Fernandez, Julia Blondeau, Yann Marez, Jason Freeman, Christopher Trapani
and others. . .

Antescofo is also in debt to and heartily acknowledges the patience of RIMs at IRCAM
and elsewhere that have been in the front line in the use of Antescofo in actual performances:
Greg Beller, José Echeveste, José Miguel Fernandez, Thomas Goepfer, Carlo Laurenzi, Serge
Lemouton, Grégoire Lorieux, Augustin Muller, Gilbert Nouno and others. . .

Over the years, the Antescofo system has been developped by Arshia Cont, Philippe
Cuvillier, José Echeveste and Jean-Louis Giavitto. Additional help on Ascograph by Grig
Burloiu, Thomas Coffy and Robert Piechaud.

The development of Antescofo has been made possible by support from Ircam, CNRS umr
STMS 9912, Inria project MuTAnt, UPMC and ANR project INEDIT.

abort action antescofo argument assignment attributes audio body breakpoints called case
clause command compound computation condition current curve date def definition delay
duration elements end evaluated event example expression figure file following form function
given group history icmd identifier instance integer interpolation iteration label launched list
local loop macro map max message name nim note number numeric object operator order
pattern performed position predicate print process ref refers result returns score sec size
specification specified

start string
synchronization systems target tempo temporal tight
trace true type updated used value var variable whenever

339

http://repmus.ircam.fr/giavitto
http://repmus.ircam.fr/arshia-cont
http://repmus.ircam.fr/arshia-cont
http://www.juliablondeau.fr/
http://www.antescofo.com/
http://www.ircam.fr/
http://www.cnrs.fr/ins2i
http://www.cnrs.fr/ins2i
http://www.inria.fr/equipes/mutant
http://www.upmc.fr/
http://www.agence-nationale-recherche.fr/?Projet=ANR-12-CORD-0009

340 CHAPTER 20. ACKNOWLEDGEMENTS AND CREDITS

Figure 20.1: Final image: experimental music

Chapter 21

Index

A

[@abort]
[@abs]
[@acos]
[@active]
[@add_pair]
[@aggregate]
[@align_breakpoints]
[@ante]
[@approx]
[@arch_darwin]
[@arch_linux]
[@arch_windows]
[@asin]
[@atan]
a strongly timed language
abort
abort handler
action
action as expression
action label
action priority
action specification
actor
alive
antescofo cookbook

341

/Reference/5-synchro/index.html
/Reference/atomic_termination/index.html
/Reference/atomic_termination/index.html
/Reference/action_ref/index.html
/Reference/exp_action/index.html
/UserGuide/action/index.html#label
/Reference/time_priority/index.html
/Reference/action_ref/index.html
/Reference/actors/index.html
/Reference/7-scalar/index.html#alive-and-dead-exec
/Library/snipets/index.html

342 CHAPTER 21. INDEX

antescofo distribution
antescofo workflow
antescofo::actions
antescofo::add_completion_string
antescofo::analysis
antescofo::asco_trace
antescofo::ascographheight_set
antescofo::ascographwidth_set
antescofo::ascographxy_set
antescofo::before_nextlabel
antescofo::bpmtolerance
antescofo::calibrate
antescofo::clear
antescofo::decodewindow
antescofo::filewatchset
antescofo::gamma
antescofo::get_current_score
antescofo::get_patch_receivers
antescofo::getlabels
antescofo::gotobeat
antescofo::gotolabel
antescofo::harmlist
antescofo::info
antescofo::killall
antescofo::mode
antescofo::mute
antescofo::nextaction
antescofo::nextevent
antescofo::nextlabel
antescofo::nextlabeltempo
antescofo::nofharm
antescofo::normin
antescofo::obsexp
antescofo::pedal
antescofo::pedalcoeff
antescofo::pedaltime
antescofo::piano
antescofo::play

http://forumnet.ircam.fr/product/antescofo-en/index.html
/UserGuide/workflow_editing/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html

A 343

antescofo::playfrombeat
antescofo::playfromlabel
antescofo::playstring
antescofo::playstring_append
antescofo::playtobeat
antescofo::playtolabel
antescofo::preload
antescofo::preventzigzag
antescofo::previousevent
antescofo::previouslabel
antescofo::printfwd
antescofo::printscore
antescofo::read
antescofo::report
antescofo::score
antescofo::scrubtobeat
antescofo::scrubtolabel
antescofo::setvar
antescofo::start
antescofo::startfrombeat
antescofo::startfromlabel
antescofo::static_analysis
antescofo::stop
antescofo::suivi
antescofo::tempo
antescofo::tempoinit
antescofo::temposmoothness
antescofo::tune
antescofo::unmute
antescofo::variance
antescofo::verbosity
antescofo::version
argument evaluation strategies
argument passing strategies
articulating time
ascograph
assignment
atomic action

/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/Reference/argument_passing_strategies/index.html
/Reference/argument_passing_strategies/index.html
/Reference/time_fabric/index.html#articulating-time
http://forumnet.ircam.fr/user-groups/ascograph/index.html
/Reference/atomic_assignation/index.html
/Reference/3-atomic/index.html

344 CHAPTER 21. INDEX

atomicActionInExpression
attribute
auto delimited expressions
auto-delimited expression

B

[@between]
[@bounded_integrate]
[@bounded_integrate_inv]
[@broadcast]
boolean

C

[@car]
[@cdr]
[@ceil]
[@clear]
[@concat]
[@cons]
[@conservative]
[@copy]
[@cos]
[@cosh]
[@count]
chuck
closed expression
commands
compound action
conditional action
conditional expression
constant bpm expression
continuation
continuation operator
coroutine
[curryfied functions]
curve

/Reference/9-functions/index.html#extended-expressions
/Reference/action_ref/index.html#action-attributes
/Reference/auto_delimited/index.html
/Reference/auto_delimited/index.html
/Reference/7-scalar/index.html#boolean-values
http://chuck.cs.princeton.edu/index.html
/Reference/auto_delimited/index.html
/Reference/atomic_messages/index.html
/Reference/4-compound/index.html
/Reference/compound_if/index.html
/Reference/exp_cond/index.html
/yet-to-be-written.html
/Reference/compound_continuation/index.html
/Reference/compound_continuation/index.html
/Reference/7-scalar/index.html#exec-value
/Reference/compound_curve/index.html

D 345

curve interpolation methods
curve playing a nim

D

[@dim]
[@div]
[@domain]
[@drop]
[@dump]
[@dumpvar]
data structures
dead
dealing with errors
delay
dot notation
during

E

[@empty]
[@exclusive]
[@exp]
[@explode]
end clause
error
error handling strategy
error strategies
eval when load
evaluation
evaluation at load time
event specification
events
exe
exec
exec value
expression
extended expressions

/Reference/compound_curve/index.html#interpolation-methods
/Reference/compound_curve/index.html#curve-playing-a-nim
/Reference/8-data/index.html
/Reference/7-scalar/index.html#alive-and-dead-exec
/UserGuide/workflow_rehearsal/index.html#dealing-with-errors
/Reference/action_ref/index.html#delays
/Reference/10-process/index.html#assignment-using-the-dot-notation
/Reference/compound_group/index.html#the-during-clause
/Reference/compound_group/index.html#aborting-a-group
/Reference/time_error/index.html
/Reference/time_error/index.html
/Reference/time_error/index.html
/Reference/eval_load/index.html
/Reference/eval_load/index.html
/Reference/eval_load/index.html
/Reference/event_ref/index.html
/UserGuide/events/index.html
/Reference/7-scalar/index.html#exec-value
/Reference/7-scalar/index.html#exec-value
/Reference/7-scalar/index.html#exec-value
/Reference/6-expression/index.html
/Reference/9-functions/index.html#extended-expressions

346 CHAPTER 21. INDEX

extensional function
external assignment

F

[@filter_max_t]
[@filter_median_t]
[@filter_min_t]
[@find]
[@flatten]
[@floor]
[@fun_def]
files layout
[fig:Excerpt1]
[fig:Tesla]
ForAll
ForumUser
function
function as value
functions library

G

[@global]
[@gnuplot]
[@gshift_map]
grammar of object definition
Group

H

[@history_length]
history of a variable

I

[@immediate]
[@init]

/Reference/data-map/index.html#extensional-functions
/Reference/atomic_assignation/index.html#external-assignments
/Reference/file_structure/index.html
/Reference/compound_forall/index.html
http://forumnet.ircam.fr/user-groups/antescofo/index.html
/Reference/9-functions/index.html
/Reference/9-functions/index.html#functions-as-values
/Library/Functions/00intro/index.html
/Reference/large_obj_def/index.html
/Reference/compound_group/index.html
/Reference/exp_variable/index.html#histories-access

J 347

[@insert]
[@integrate]
[@iota]
[@is_bool]
[@is_defined]
[@is_exec]
[@is_fct]
[@is_float]
[@is_function]
[@is_int]
[@is_integer_indexed]
[@is_interpolatedmap]
[@is_list]
[@is_map]
[@is_nim]
[@is_numeric]
[@is_obj]
[@is_obj_xxx]
[@is_prefix]
[@is_proc]
[@is_string]
[@is_subsequence]
[@is_suffix]
[@is_symbol]
[@is_tab]
[@is_undef]
[@is_vector]
if
impure predefined functions
infix Notation for Function Calls
int
intentional function
internal command
internal commands

J

jump

/Reference/compound_if/index.html
/Library/Functions/00intro/index.html#side-effect
/Reference/9-functions/index.html#infix-notation-for-function-calls
/yet-to-be-written.html
/Reference/7-scalar/index.html#user-defined-functions
/Reference/atomic_command/index.html
/Reference/atomic_command/index.html
/yet-to-be-written.html

348 CHAPTER 21. INDEX

K

L

[@lace]
[@last]
[@latency]
[@linearize]
[@listify]
[@loadvalue]
[@loadvar]
[@log]
[@log10]
[@log2]
[@local]
[@loose]
lexical elements
library Functions
library
local tempo
logical instant
loop

M

[@macro_def]
[@make_bpm_map]
[@make_bpm_tab]
[@make_duration_map]
[@make_duration_tab]
[@make_label_bpm]
[@make_label_duration]
[@make_label_pitches]
[@make_label_pos]
[@make_pitch_tab]
[@make_score_map]
[@map]
[@map_compose]

/Reference/2-syntax/index.html
/Library/Functions/00intro/index.html
/Library/Functions/00intro/index.html
/Reference/compound_group/index.html#local-tempo
/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages
/Reference/compound_loop/index.html

N 349

[@map_concat]
[@map_history]
[@map_history_date]
[@map_history_rdate]
[@map_normalize]
[@map_reverse]
[@mapval]
[@max]
[@max_key]
[@max_val]
[@median]
[@member]
[@merge]
[@min]
[@min_key]
[@min_val]
macro versus Function versus Process
macro, Function and Processus
macro
management of Time
map
max
message
methods
mutating a tab element

N

[@norec]
[@normalize]
[@number_active]
Nim

O

[@obj_def]
[@occurs]
obj

/Reference/macro_function_process_comparison/index.html
/Reference/macro_function_process_comparison/index.html
/Reference/11-macros/index.html
/Reference/5-synchro/index.html
/yet-to-be-written.html
https://cycling74.com/index.html
/Reference/atomic_messages/index.html
/yet-to-be-written.html
/Reference/data-tab/index.html#mutating-a-tabs-element
/Reference/data-nim/index.html
/Reference/actors/index.html

350 CHAPTER 21. INDEX

objects
object instantiation
open Scores and Dynamic jumps
OSC message
OSC messages
OSC protocol
OSCRECEIVE

P

[@pattern_def]
[@permute]
[@plot]
[@post]
[@pow]
[@proc_def]
[@progressive]
[@projection]
[@push_back]
[@push_front]
pattern
patterns
pd
priority
proc
proc value
proc values
process call
process
processes
processus
procVariable
program Structure

/yet-to-be-written.html
/Reference/compound_process_creation/index.html
/Reference/event_ref/index.html#open-score-and-dynamic-jumps
/Reference/atomic_osc/index.html
/Reference/atomic_osc/index.html
http://opensoundcontrol.org/index.html
/Reference/atomic_osc/index.html#oscreceive
/Reference/patterns/index.html
/Reference/patterns/index.html
https://puredata.info/index.html
/Reference/time_priority/index.html#action-priority
/Reference/7-scalar/index.html#proc-values
/Reference/7-scalar/index.html#proc-values
/Reference/7-scalar/index.html#proc-values
/Reference/compound_process_creation/index.html
/Reference/10-process/index.html
/Reference/10-process/index.html
/Reference/10-process/index.html
/Reference/10-process/index.html#assignment-using-the-dot-notation
/Reference/structure_ref/index.html

Q 351

Q

R

[@rand]
[@rand_int]
[@random]
[@range]
[@reduce]
[@remove]
[@remove_duplicate]
[@replace]
[@reshape]
[@resize]
[@reverse]
[@rnd_bernoulli]
[@rnd_binomial]
[@rnd_exponential]
[@rnd_gamma]
[@rnd_geometric]
[@rnd_normal]
[@rnd_uniform_float]
[@rnd_uniform_int]
[@rotate]
[@round]
[@rplot]
Reference Manual
reserved @-identifier
reserved keywords
return

S

[@sample]
[@savevalue]
[@scan]
scoped variable
[@score_tempi]

/Reference/1-intro/index.html
/Reference/2-syntax/index.html#-identifiers-functions-macros-and-attributes
/Reference/2-syntax/index.html#reserved-keywords
/Reference/9-functions/index.html#the-return-statement
/Reference/exp_variable/index.html#accessing-a-local-variable-from-outside-its-scope-of-definition

352 CHAPTER 21. INDEX

[@scramble]
[@select_map]
[@set_osc_handling_tab]
[@shape]
[@shift_map]
[@simplify_lang_v]
[@simplify_radial_distance_t]
[@simplify_radial_distance_v]
[@sin]
[@sinh]
[@size]
[@slice]
[@sort]
[@sputter]
[@sqrt]
[@string2fun]
[@string2obj]
[@string2proc]
[@stutter]
[@sync]
[@system]
scalar values
Scheduling priorities
score import
setvar
side effect
simple expressions
splitting
string
superdense time
switch action
Switch
synchronization
synchrony hypothesis
Synchronization Strategies
system variables

/Reference/7-scalar/index.html
/yet-to-be-written.html
/UserGuide/workflow_editing/index.html#importing-scores-to-antescofo-import-of-midi-files-and-of-musicxml-files
/Reference/atomic_command/index.html
/Library/Functions/00intro/index.html#side-effect
/Reference/6-expression/index.html#simple-expressions
/Reference/file_structure/index.html#writing-an-augmented-score-through-multiple-file
/Reference/data-string/index.html
/Reference/time_manufacturing/index.html#superdense-time
/Reference/compound_if/index.html
/Reference/compound_if/index.html
/Reference/time_synchro/index.html
/Reference/time_manufacturing/index.html#instants-succession-and-simultaneity-synchronous-languages
/Reference/time_synchro/index.html
/Reference/exp_variable/index.html#antescofo-system-variables

T 353

T

[@tab_history]
[@tab_history_date]
[@tab_history_rdate]
[@take]
[@tan]
[@target]
[@tempo]
[@tempovar]
[@tight]
[@Tracing]
[@track_def]
Tab
Temporal Pattern
Temporal Patterns
temporal scope
temporal variable
tempovar
the fabric of time
the manufacturing of time
three kinds of expressions
Tracing
Tracks

U

[@UnTracing]
undef
until
user Guide

V

value
variable
variable declaration
variables and notifications

/Reference/data-tab/index.html
/Reference/patterns/index.html
/Reference/patterns/index.html
/Reference/time_fabric/index.html
/Reference/exp_tempovar/index.html
/Reference/exp_tempovar/index.html
/Reference/time_fabric/index.html
/Reference/time_manufacturing/index.html
/Reference/6-expression/index.html#three-kinds-of-expressions
/yet-to-be-written.html
/Reference/tracks/index.html
/Reference/7-scalar/index.html#the-undefined-value
/Reference/compound_group/index.html#the-until-clause
/UserGuide/intro/index.html
/Reference/exp_value/index.html
/Reference/exp_variable/index.html
/Reference/exp_variable/index.html#variables-declaration
/Reference/exp_variable/index.html

354 CHAPTER 21. INDEX

vectorial curve

W

[@whenever]
[@window_filter_t]
what to Choose Between Macro, Functions and Processes
Whenever
while

X

Y

Z

Miscellaneous

@!=
@%
@&&
[@*]
@+
@-
@<
@<=
@==
@>
@>=
@||
@/
Antescofo Library of Predefined Functions
Antescofo includes a set of predefined functions. They are described mostly in the chapters

Expressions, Scalar values and Data structures. For the reader’s convenience, we give here a
list of these functions.

In the following pages, the sequence of names after the function defines the type of the
arguments accepted by a function. For example numeric is used when an argument must
satisfy the predicate @is_numeric, that is @is_int or @is_float. In addition, we use
the term value when the function accepts any kind of argument.

/Reference/compound_curve/index.html#vectorial-curve
/Reference/11-macros/index.html#what-to-choose-between-macro-functions-and-processes
/Reference/compound_whenever/index.html
/Reference/compound_group/index.html#the-until-clause
/Library/Functions/@!=/index.html
/Library/Functions/@%/index.html
/Library/Functions/@&&/index.html
/Library/Functions/@+/index.html
/Library/Functions/@-/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@==/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%7C%7C/index.html
/Library/Functions/@div/index.html
/Reference/6-expression/index.html
/Reference/7-scalar/index.html
/Reference/8-data/index.html

MISCELLANEOUS 355

Figure 21.1: header figure

356 CHAPTER 21. INDEX

Listable Functions and Listable Predicates

When a function f is marked as listable, the function is extended to accept tab arguments
in addition to scalar arguments. Usually, the result of the application of f on a tab is the
tab resulting on the point-wise application of f to the scalar elements of the tab. But for
predicate, i.e. a function that returns a [bool], the result is the predicate that returns true if
the scalar version returns true on all the elements of the tabs.

For example, @abs is a listable function on numeric, so it can be applied to a tab of
numerics. The result is the tab of the absolute value of the elements of the tab argument.

Another example: the function @approx is a listable predicate and @approx(u, v)
returns true if @approx(u[i], v[i]) returns true for all elements i of the tabs u and v.

Overloaded functions

Some functions accept different kinds of values for the same argument. For example [@insert]
accepts tab or map as its first argument. Such functions are said overloaded: they gather
under the same name several specialized version of the function.

A user-defined function can be overloaded: it recquires to check the type of the argument
value to dispatch to the specialized versions (written elsewhere).

Overloading methods is more simple: the same identifier can be used to name a method in
different objects.

Side-Effect

Most functions are pure functions, that is, they do not modify their arguments and build a
new value for the result.

In some cases, the function works by a side-effect, like @push_back which modifies its
argument in place. Such functions are marked as impure. We also qualify functions that may
return different values when called with the same arguments as impure, even if they do not
produce a side-effect (for example, functions that return a random number).

Special forms

Special forms are syntactic constructs similar to function calls but that are subject to some
restriction or that behave differently of a function call.

For example, boolean predicates are a special form of function application because they
do not always evaluate all their arguments (they are lazy). For instance, the conjunction &&
evaluates its second argument only if the first is not false.

Another example is [@plot], [@history_length] or [@dumpvar] that only accepts a variable
as an argument, not a general expression.

Special forms cannot be curryfied nor passed as an argument: they are not ordinary
functional values. Note, howevever that they can be wrapped in a user-defined function which
is an ordinary functional value.

/Reference/data-tab/index.html

LISTING BY CATEGORIES 357

Function call in infix form

A function call is usually written in prefix form:

@drop($t, 1)
@scramble($t)

It is possible to write function calls in infix form, as follows:

$t.@drop(1)
$t.@scramble()

The @ character is optional when naming a function in infix call, so we can also write:

$t.drop(1)
$t.scramble()

This syntax is the same as for a method call. The general form is:

arg1 . @fct (arg2, arg3, ...) ; or more simply
arg1 . fct (arg2, arg3, ...)

The argi are expressions. Notice that the infix call, with or without the @ in the function
name, is not ambiguous with the notation used to refer to a variable local $x in a compound
action from the exe of this action, exe.$x, because $x cannot be the name of a function.

The infix notation is less general than the prefix notation. In the prefix notation, the
function can be given by an expression. For example, functions can be stored into an array
and then called following the result of an expression:

$t := [@f, @g]
; ...
($t[exp])()

will call @f or @g following the value returned by the evaluation of exp. Only function
name (with or without @) are accepted in the infix notation.

Listing by categories

{!Library/Functions/math_functions.list!}

{!Library/Functions/random_functions.list!}

{!Library/Functions/tab_functions.list!}

in addition, see listable functions.

358 CHAPTER 21. INDEX

{!Library/Functions/listable_functions.list!}

{!Library/Functions/nim_functions.list!}

{!Library/Functions/map_functions.list!}

{!Library/Functions/string_functions.list!}

{!Library/Functions/predicates_functions.list!}

{!Library/Functions/score_functions.list!}

{!Library/Functions/system_functions.list!}

Alphabetical Listing of Antescofo Predefined Functions

{!Library/Functions/functions.list!}

@!=(value, value) ; listable

Prefix form of the infix relational operator. Same remarks as for @<.
See also @==, @>, @>=, @<, @<=

@==(value, value) ; listable

prefix form of the infix relational operator. Same remarks as for @<. So, beware that

@==(1, 1.0)

which is equivalent to 1 == 1.0 evaluates to true.
See also @!=, @>, @>=, @<, @<=

@<(value, value) ; listable

Prefix form of the infix relational operator <.
This is a total order: values of different type can be compared and the order between

unrelated type is ad hoc. Notice however that coercion between numeric applies if needed. So

0 < 0.0

returns false
See also @==, @!=, @>, @>=, @<=

@<=(value, value) ; listable

Prefix form of the infix relational operator <=. Same remarks as for @<.
See also @==, @!=, @>, @>=, @<

/Library/Functions/@%3C/index.html
/Library/Functions/@==/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@==/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@==/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%3C/index.html

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 359

@>=(value, value) ; listable

Prefix form of the infix relational operator >=. Same remarks as for @<.
See also @==, @!=, @>, @<, @<=

@>=(value, value) ; listable

Prefix form of the infix relational operator >=. Same remarks as for @<.
See also @==, @!=, @>, @<, @<=

@||(value, value) ; listable

functional prefix form of the infix logical disjunction. Contrary to the || operator, the
functional form is not lazy, cf. sect. [lazy logical operator]: so @||(a, b) evaluates b
irrespectively of the value of a.

See also @&&.

@&&(value, value) ; listable

functional prefix form of the infix logical conjunction. Contrary to the && operator, the
functional form is not lazy, cf. sect. [lazy logical operator]: so @&&(a, b) evaluates b
irrespectively of the value of a.

See also @||.

@+(value, value) ; listable

@+ is the prefix form of the infix binary operator +
The functional form of the operator is useful as an argument of a high-order function as in

@reduce(@+, v) which sums up all the elements of the tab v.
The addition of an int and a float returns a float.
The addition of two string corresponds to the concatenation of the arguments.
The addition of a string and any other value convert this value into its string representation

before the concatenation.
See also @-, [@*], @/, @%

@-(numeric, numeric) ; listable

prefix form of the infix arithmetic operator - (substraction). Coercions between numeric
apply when needed.

See also @+, [@*], @/, @%

@%(numeric, numeric) ; listable

prefix form of the infix binary operator %. Coercions between numerics apply when needed.
See also @+, @-, [@*], @/

/Library/Functions/@%3C/index.html
/Library/Functions/@==/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@==/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@&&/index.html
/Library/Functions/@%7C%7C/index.html
/Library/Functions/@-/index.html
/Library/Functions/@div/index.html
/Library/Functions/@%/index.html
/Library/Functions/@+/index.html
/Library/Functions/@div/index.html
/Library/Functions/@%/index.html
/Library/Functions/@+/index.html
/Library/Functions/@-/index.html
/Library/Functions/@div/index.html

360 CHAPTER 21. INDEX

@!=(value, value) ; listable

Prefix form of the infix relational operator. Same remarks as for @<.
See also @==, @>, @>=, @<, @<=

@%(numeric, numeric) ; listable

prefix form of the infix binary operator %. Coercions between numerics apply when needed.
See also @+, @-, [@*], @/

@&&(value, value) ; listable

functional prefix form of the infix logical conjunction. Contrary to the && operator, the
functional form is not lazy, cf. sect. [lazy logical operator]: so @&&(a, b) evaluates b
irrespectively of the value of a.

See also @||.

@*(numeric, numeric) ; listable

prefix form of the infix arithmetic operator * (multiplication). Coercions between numeric
apply when needed.

See also [@+-], [@-*], @/, @%

@+(value, value) ; listable

@+ is the prefix form of the infix binary operator +
The functional form of the operator is useful as an argument of a high-order function as in

@reduce(@+, v) which sums up all the elements of the tab v.
The addition of an int and a float returns a float.
The addition of two string corresponds to the concatenation of the arguments.
The addition of a string and any other value convert this value into its string representation

before the concatenation.
See also @-, [@*], @/, @%

@-(numeric, numeric) ; listable

prefix form of the infix arithmetic operator - (substraction). Coercions between numeric
apply when needed.

See also @+, [@*], @/, @%

@<(value, value) ; listable

Prefix form of the infix relational operator <.
This is a total order: values of different type can be compared and the order between

unrelated type is ad hoc. Notice however that coercion between numeric applies if needed. So

/Library/Functions/@%3C/index.html
/Library/Functions/@==/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@+/index.html
/Library/Functions/@-/index.html
/Library/Functions/@div/index.html
/Library/Functions/@%7C%7C/index.html
/Library/Functions/@div/index.html
/Library/Functions/@%/index.html
/Library/Functions/@-/index.html
/Library/Functions/@div/index.html
/Library/Functions/@%/index.html
/Library/Functions/@+/index.html
/Library/Functions/@div/index.html
/Library/Functions/@%/index.html

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 361

0 < 0.0

returns false
See also @==, @!=, @>, @>=, @<=

@<=(value, value) ; listable

Prefix form of the infix relational operator <=. Same remarks as for @<.
See also @==, @!=, @>, @>=, @<
(,), : prefix form of the infix relational operator. Same remarks as for . So, beware that

evaluates to .

@==(value, value) ; listable

prefix form of the infix relational operator. Same remarks as for @<. So, beware that

@==(1, 1.0)

which is equivalent to 1 == 1.0 evaluates to true.
See also @!=, @>, @>=, @<, @<=

@>(value, value) ; listable

Prefix form of the infix relational operator >. Same remarks as for @<.
See also @==, @!=, @>=, @<, @<=

@>=(value, value) ; listable

Prefix form of the infix relational operator >=. Same remarks as for @<.
See also @==, @!=, @>, @<, @<=

@/(numeric, numeric) ; listable

prefix form of the infix arithmetic operator /. Coercions between numeric apply when
needed.

See also @+, @-, [@*], @%

@||(value, value) ; listable

functional prefix form of the infix logical disjunction. Contrary to the || operator, the
functional form is not lazy, cf. sect. [lazy logical operator]: so @||(a, b) evaluates b
irrespectively of the value of a.

See also @&&.

/Library/Functions/@==/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@==/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@==/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@==/index.html
/Library/Functions/@!=/index.html
/Library/Functions/@%3E/index.html
/Library/Functions/@%3C/index.html
/Library/Functions/@%3C=/index.html
/Library/Functions/@+/index.html
/Library/Functions/@-/index.html
/Library/Functions/@%/index.html
/Library/Functions/@&&/index.html

362 CHAPTER 21. INDEX

@/(numeric, numeric) ; listable

prefix form of the infix arithmetic operator /. Coercions between numeric apply when
needed.

See also @+, @-, [@*], @%

@abs(numeric) ; listable

absolute value
See also {!Library/Functions/math_functions.list!}

@acos(numeric) ; listable

arc cosine
See also {!Library/Functions/math_functions.list!}

@active(string)
@active(proc)
@active()

returns in a tab the active (alive) exe of the instances of a process or an object specified
through its name (a string with or without the prefix :: or obj::) or through its proc
value. With no argument, return all active exe in a tab.

See also [@number_active]

@add_pair(dico:map, key:value, val:value)

add a new entry to a dictionary. If an entry with key key already exists, value val replaces
the old value. The dictionnary dico is updated in place. The function returns its first
argument.

See also [@insert]

@aggregate(n1:nim, n2:nim, ...)

aggregates the arguments into a vectorial nim. The number of components of the result is
the sum of the number of components of each arguments. This function admits a variable
number of argument and cannot be curryfied.

See also [@projection]
See also {!Library/Functions/nim_functions.list!}

@align_breakpoints(nim)

builds a new nim with linear interpolation type whose homogeneous breakpoints are the
breakpoints of all components of the arguments.

/Library/Functions/@+/index.html
/Library/Functions/@-/index.html
/Library/Functions/@%/index.html

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 363

A vectorial nim is homogeneous if all its component have the same breakpoints, i.e.
breakpoints with the same abcisses.

See also [@align_breakpoints], [@sample] and the nim simplification functions: [@sim-
plify_radial_distance_t], [@simplify_radial_distance_v], [@simplify_lang_v], [@filter_median_t],
[@filter_min_t], [@filter_max_t], [@window_filter_t]

In the figure below, the diagram at the top left shows a vectorial nim with two components:

• the effect of @sample is pictured at top right,

• the effect of @align_breakpoints is sketched at bottom left,

• and the effect of @linearize is illustrated at bottom right.

Figure 21.2: the effect of @sample, @align_breakpoints and @linearize on a nim

@approx(x:numeric, y:numeric) ; listable

The function call can also be written with the special syntax

(x ~ y)

note that the parenthesis are mandatory.
This predicate returns true if

364 CHAPTER 21. INDEX

abs((x - y)/max(x, y)) < $APPROX_RATIO

The predefined variable $APPROX_RATIO is initalized to 0.1 so (x ~ y) means x and
y differ by less than 10%. By changing the value of the variable , one changes the level of
approximation for the following calls to @approx.

Notice that using this function to check if a number is near zero is a bad idea: (x ~ 0)
results in the comparaison of 1 or -1 (as a result of abs(x)/x) even if x is zero.

If one argument is a tab and the other is a scalar u, the scalar argument is extended to
tab if (all elements of the extension are equal to u) and the predicate returns true if it hold
pointwise for all elements of the tabs. For example

(tab[1, 2] ~ 1.02)

returns false because we don’t have (2 ~ 1.02).

@arch_darwin()

this predicate returns true if the underlying host is Mac OSX and false elsewhere.
See also [@arch_linux] and [@arch_windows]

@arch_linux()

this predicate returns true if the underlying host is a Linux system and false elsewhere.
See also [@arch_darwin] and [@arch_windows]

@arch_windows()

this predicate returns true if the underlying host is a Windows system and false
elsewhere.

See also [@arch_darwin] and [@arch_linux]

@asin(numeric) ; listable

arc sine
{!Library/Functions/math_functions.list!}

@atan(numeric) ; listable

arc tangente
{!Library/Functions/math_functions.list!}

@between(a:numeric, x:numeric, b:numeric) ; listable

This function admits an infix special syntax and can be written

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 365

(x in a .. b)

the parenthesis are mandatory. This predicate is true if

(a < x) && (x < b)

If one argument is a tab, each scalar argument u is extended into a tab whose all elements
are equal to u and the predicate returns true if it hold point-wise for all elements of the tabs.
For example:

([1, 2] in 0 .. 3)

returns true because 0 < 1 < 3and 1 < 2 < 3.
{!Library/Functions/math_functions.list!}

@bounded_integrate() ; deprecated

this function is deprecated

@bounded_integrate_inv() ; deprecated

this function is deprecated

@car(tab)

returns the first element of tab if is not empty, else an empty tab.
Some functions handle tab as lisp lists: [@car], [@cdr], [@concat], [@cons], [@empty],

[@drop], [@take].
See also {!Library/Functions/tab_functions.list!}

@cdr(tab)

if the argument is not empty, it returns a copy of it but deprived of its first element, else it
returns an empty tab.

Some functions handle tab as lisp lists: [@car], [@cdr], [@concat], [@cons], [@empty],
[@drop], [@take].

See also {!Library/Functions/tab_functions.list!}

@ceil(numeric)

This function returns the smallest integral value greater than or equal to its argument.
See also {!Library/Functions/math_functions.list!}

@clear(tab)
@clear(map)

366 CHAPTER 21. INDEX

clear all elements in the tab or in the map argument, resulting in a vector or a dictionary
of size zero.

See also {!Library/Functions/tab_functions.list!}
See also {!Library/Functions/map_functions.list!}

@concat(tab, tab)

returns a new tab made by the concatenation of the two tab arguments.
See also {!Library/Functions/tab_functions.list!}

@cons(v:value, t:tab)

build a new tab by prepending v to t.
See also {!Library/Functions/tab_functions.list!}

@copy(value)

returns a fresh copy of the argument. For data structure like map or tab, the copy is a
deep copy: elements of the data structure are also copied.

@cos(numeric)

computes the cosine of its argument (measured in radians).
See also {!Library/Functions/math_functions.list!}

@cosh(numeric)

computes the hyperbolic cosine of its argument.
See also {!Library/Functions/math_functions.list!}

@count(tab, value)
@count(map, value)
@count(string, value)

computes the number of times the second argument appears in the first argument. For a
map, the second argument refers to a value stored in the dictionary. For a string, the second
argument must be a string and the call returns the number of occurences of the first character
in the first string:

@count("abacaa", "a")

returns 4.
See also [@find], [@member] and [@occurs].

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 367

@dim(t:tab)
@dim(n:nim)

if the argument is a tab t, the call returns the dimension of t, i.e. the maximal number of
nested tabs. If the argument is a nim n, the call returns the number of components of the
nim, i.e. the nimber of elements in the tab returned by the application of the nim.

In either case, the returned value is an integer strictly greater than 0. If the argument is
not a tab nor a nim, the dimension is 0.

@domain(m:map)

returns a tab containing all the keys present in the map m.
See also [@range].
See also {!Library/Functions/map_functions.list!}

@drop(t:tab, n:numeric)
@drop(t:tab, x:tab)

@drop(t:tab, n:numeric) build a new tab which is t with its first n elements dropped
if n > 0, and with its last n elements dropped if n < 0.

@drop(t:tab, x:tab) returns the tab formed by the elements of t whose indices are
not element of x.

See also lisp like functions: [@car], [@cdr], [@concat], [@cons], [@empty], [@drop], [@take].
See also {!Library/Functions/tab_functions.list!}

@dump(file:string, variable_1, ... variable_p)

is a special form: the arguments variable_i are restricted to be variables. Calling this
special form store the values of the variables in the file whose path is file. This function is a
special form, so it cannot be curryfied.

The stored value can be restored using the function [@loadvar]. The dump file produced
by [@dump] is in a human readable format and corresponds to a fragment of the Antescofo
grammar.

The returned value is true if the value of the variable have been saved, false elsewhere
(e.g. if file cannot be created). The process of saving the values is done asynchronuously in
a dedicated thread, so the run-time computation are not perturbed.

The dump file can be produced during one program execution and can be read in another
program execution. This mechanism can be used to manage presets.

Note that this special form expands into the ordinary function [@dumpvar]. The same
comments apply.

See also [@dumpvar], [@savevalue] and [@loadvalue].

@dump(file:string, id_1:string, v_1:value, ..., id_p:string, v_p:value)

368 CHAPTER 21. INDEX

save in file the value v_i under the name id_i. Then file can be used by the function
[@loadvar] to define and set or to reset the variable with identifier id_i. The format used in
file is a text format corresponding to the Antescofo grammar.

The number of argument is variable, so this function cannot be curryfied.
Dumping the values of the variables is done in a separate thread, so the “main” computation

is not perturbed. However, it means that the file is created asynchronously with the function
call and when the function returns, the file may not be completed.

See also [@dump], [@savevalue] and [@loadvalue].

@empty(tab)
@empty(map)

returns true for an empty tab or an empty dictionary and false elsewhere.
See also {!Library/Functions/tab_functions.list!}
See also {!Library/Functions/map_functions.list!}

@exp(x:numeric)

the base e exponential of x.
See also {!Library/Functions/math_functions.list!}

@explode(s:string)

returns a tab containing the characters of s (the characters are represented as string with
only one element). For example:

@explode("") -> []
@explode("abc") -> ["a", "b", "c"]

@reduce(@+, @explode("abc")) -> "abc"
@scan(@+, @explode("abc")) -> ["a", "ab", "abc"]

See also {!Library/Functions/string_functions.list!}

@filter_max_t(nim, n:numeric)

build a new smoother nim from the nim argument. The result is build by replacing every
image y0 of a breakpoint (x0, y0) by the maximum value of the y in a sequence of 2n +
1 breakpoints centered on (x0, y0). The first n breakpoints and the last n breakpoints are
leaved untouched. The resulting nim has the same number of breakpoint as the argument
with the same x.

See also [@filter_median_t], [@filter_min_t], [@window_filter_t].

@filter_median_t(nim, n:numeric)

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 369

build a new smoother nim from the nim argument. The result is build by replacing every
image y0 of a breakpoint (x0, y0) by the median value of the y in a sequence of 2n + 1
breakpoints centered on (x0, y0). The first n breakpoints and the last n breakpoints are
leaved untouched. The resulting nim has the same number of breakpoint as the argument
with the same x.

See also [@filter_max_t], [@filter_min_t], [@window_filter_t].

@filter_min_t(nim, n:numeric)

build a new smoother nim from the nim argument. The result is build by replacing every
image y0 of a breakpoint (x0, y0) by the minimum value of the y in a sequence of 2n +
1 breakpoints centered on (x0, y0). The first n breakpoints and the last n breakpoints are
leaved untouched. The resulting nim has the same number of breakpoint as the argument
with the same x.

See also [@filter_max_t], [@filter_median_t], [@window_filter_t].

@find(t:tab, f:function)
@find(m:map, f:function)
@find(s:string, f:function)

returns the index of the first element of t, m or s that satisfies the predicate f.
The predicate is a binary function taking the index or the key as the first argument and

the associated value for the second argument.
The undef value (for maps) or the integer -1 (for tab and string) is returned if there is no

pair satisfying the predicate.
See also [@count], [@member] and [@occurs].
Example:

@fun_def p(i, v) { return (i > 1) && (v % 2 == 0) }
@find([1, 2, 3, 4], @p) ; returns 4

[@find] returns the first index greather than one such that the corresponding element is a
multiple of two.

@fun_def p(i, v) { return (i > 1) && (v >= "b") }
@find("abcdefg", @p) ; returns 2

the index 2 is returned because the "c" is the first character greather or equal to "b" such
that its position is strictly greather than one (character numbering starts at zero).

@flatten(t:tab)
@flatten(t:tab, n:numeric)

flatten(t) returns a new tab where where the nesting structure of t has been flattened.
For example,

370 CHAPTER 21. INDEX

@flatten([[1, 2], [3], [[], [4, 5]]]) -> [1, 2, 3, 4, 5]

flatten(t, n) returns a new tab where the first n levels of nesting have been flattened.
If n == 0, the function is the identity. If n is strictly negative, it is equivalent to without
the level argument.

@flatten([1, [2, [3, 3], 2], [[[4, 4, 4]]]], 0) -> [1, [2, [3, 3], 2], [[[4, 4, 4]]]]
@flatten([1, [2, [3, 3], 2], [[[4, 4, 4]]]], 1) -> [1, 2, [3, 3], 2, [[4, 4, 4]]]
@flatten([1, [2, [3, 3], 2], [[[4, 4, 4]]]], 2) -> [1, 2, 3, 3, 2, [4, 4, 4]]
@flatten([1, [2, [3, 3], 2], [[[4, 4, 4]]]], 3) -> [1, 2, 3, 3, 2, 4, 4, 4]
@flatten([1, [2, [3, 3], 2], [[[4, 4, 4]]]], 4) -> [1, 2, 3, 3, 2, 4, 4, 4]
@flatten([1, [2, [3, 3], 2], [[[4, 4, 4]]]], -1) -> [1, 2, 3, 3, 2, 4, 4, 4]

See also some other lisp like functions: [@car], [@cdr], [@concat], [@cons], [@empty], [@drop],
[@take].

See also {!Library/Functions/tab_functions.list!}

@floor(x:numeric)

returns the largest integral value less than or equal to x
See also {!Library/Functions/math_functions.list!}

@gnuplot(data:tab)
@gnuplot(title:string, data:tab)
@gnuplot(time:tab, data:tab)
@gnuplot(title:string, time:tab, data:tab)
@gnuplot(title1:string, time1:tab, data1:tab, title2: string, time2:tab,
data2:tab, ...)

The function [@gnuplot] has a variable number of arguments and cannot be curryfied. It
admits five forms. See also [@plot] and [@rplot].

@gnuplot(data:tab)

The function [@gnuplot] plots the elements in the data tab as a time series. If data is
a tab of numeric values, a simple curve is plotted: an element e of index i gives a point of
coordinate (i, e). If data is a tab of tab (of p numeric values), p curves are plotted on
the same window.

Each [@gnuplot] invocation lead to a new window. The invocation is done asynchrounously:
when the function returns, the plot process is still running for its completion.

Function [@gnuplot] returns true if the plot succeeded, and false elsewhere.
To work, the gnuplot program must be installed on the system Cf. http://www.gnuplot.info

and must be visible from the Antescofo object (on a Mac system, it can be installed through
fink, macport or brew; on linux, it can be installed through the package management system).
They are several ways to make this command visible and the search of a gnuplot executable is
done in this order:

http://www.gnuplot.info
http://www.gnuplot.info
http://www.gnuplot.info

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 371

• set the global variable $gnuplot_path to the absolute path of the gnuplot executable
(in the form of a string);

• alternatively, set the environment variable GNUPLOT of the shell used to launch the
Antescofo standalone or the Max/PD host of the Antescofo object, to the absolute path
of the gnuplot executable;

• alternatively make visible the gnuplot executable visible from the shell used by the user
shell to launch the Antescofo standalone or the Max/PD host of the Antescofo object
(e.g. through the PATH shell variable).

The command is launched on a shell with the option -persistent and the absolute path
of the gnuplot command file.

The data are tabulated in a file /tmp/tmp.antescofo.data.n (where n is an integer)
in a format suitable for gnuplot. The gnuplot commands used to plot the data are in the
file /tmp/tmp.antescofo.gnuplot.n. These two files persists between two Antescofo
session and can then be used to plot with other option.

The [@gnuplot] function is overloaded and accepts a variety of arguments described below.
The [@gnuplot] function is used internally by the special forms [@plot] and [@rplot].

@gnuplot(title:string, data:tab)

same as the previous form, but the first argument is used as the label of the plotted curve.
If data is a tab of tab, (e.g. the history of a tab valued variable), then the label of each curve
takes the form title_i.

@gnuplot(time:tab, data:tab)

plots the points time[i], data[i]). As for the previous form, data can be a tab of
tab (of numeric values). The time tab corresponds to the x coordinates of the plot and must
be a tab of numeric values.

@gnuplot(title:string, time:tab, data:tab)

Same as the previous entry but the first argument is used as the label of the curve(s).

@gnuplot(title1:string, time1:tab, data1:tab, title2: string, time2:tab,
data2:tab, ...)

http://www.gnuplot.info
http://www.gnuplot.info
http://www.gnuplot.info
http://www.gnuplot.info

372 CHAPTER 21. INDEX

In this variant, several curves are plotted in the same window. One curve is specified by 2
or 3 consecutive arguments. Three arguments are used if the first considered argument is a
string: in this case, this argument is the label of the curve. The following argument is used
as the x coordinates and the next one as the y coordinates of the plotted point. The tab
arguments must be tab of numeric values (they cannot be tab of tab).

@gshift_map(a:map, f:function)

(where f can be a map, a nim or an intentional function), builds a new map b such that

b(f(x)) = a(x)

See also {!Library/Functions/map_functions.list!}

@history_length(variable)

This is a special form: the argument must be a variable (it cannot be a general expression).
It returns the maximal length of the history of the variable, i.e. the number of update that
are recorded.

@insert(t:tab, i:numeric, v:value)
@insert(m:map, k:val, v:value)

[@insert] is an impure overloaded function.
@insert(t, i, v) inserts “in place” the value v into the tab t after the index i (tab’s

elements are indexed starting with 0). If i is negative, the insertion take place in front of the
tab. If i >= @size(t) the insertion takes place at the end of the tab.

@insert(m, k, v) inserts “in place” a new entry with value v under key k in the map
m. If the entry already exists, the current value is replaced by v. See [@add_pair]

Notice that the form is also used to include a file at parsing time. See section file structure.
not yet documented

@iota(n:numeric)

returns [$x | $x in n] that is, a tab listing the integers from to 0 to n excluded.

@is_bool(value)

the predicate returns true if its argument is a boolean value.
See also {!Library/Functions/predicates_functions.list!}

@is_defined(dico:map, k:value)

the predicate returns true if k is a key present in dico Do not mismatch with the negation
of the predicate [@is_undef].

See also {!Library/Functions/predicates_functions.list!}

/Reference/file_structure/index.html

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 373

@is_exec(value)

the predicate returns true if the argument represents an exec, that is, the instance of a
compound action (e.g., the result of a process call or an object instantiation).

The predicate returns true even if the compound action has finished its computation.
However, the exec itself used in a boolean condition evaluates to true if the compound action
is still running and false elsewhere.

See also {!Library/Functions/predicates_functions.list!}

@is_fct(value)

the predicate returns true if its argument is an intentional function, i.e. a predefined
function, or a function defined using @fun_def, or a partial application of such functions.

See also {!Library/Functions/predicates_functions.list!}

@is_float(value)

the predicate returns true if its argument is a floating point value (a decimal number).
Floating point values correspond to IEEE-754 double precision values (the C type double).

See also {!Library/Functions/predicates_functions.list!}

@is_function(value)

the predicate returns true if its argument is a map, a nim, an intentional function (defined
using @fun_def, a method, a signal or a partial application of such functions.

If a value satisfies this predicates, it can be applied to (zero or more) arguments to achieve
a function call.

See also {!Library/Functions/predicates_functions.list!}

@is_int(value)

the predicate returns true if its argument is a signed integer. Integeres are represented
using C type long. The number of bits depends of the Antescofo variants and may differes
between the 32 and the 64 bits version.

See also {!Library/Functions/predicates_functions.list!}

@is_integer_indexed(value)

the predicate returns true if its argument is a map whose domain is a set of integers.
See also {!Library/Functions/predicates_functions.list!}

@is_interpolatedmap(value) ; deprecated

deprecated

374 CHAPTER 21. INDEX

@is_list(value)

the predicate returns true if its argument is a map whose domain is the integers [0 ..
n] for some n.

See also {!Library/Functions/predicates_functions.list!}

@is_map(value)

the predicate returns true if its argument is a map.
See also {!Library/Functions/predicates_functions.list!}

@is_nim(value)

the predicate returns true if its argument is a nim.
See also {!Library/Functions/predicates_functions.list!}

@is_numeric(value)

the predicate returns true if its argument is an integer or a floating point value.
See also {!Library/Functions/predicates_functions.list!}

@is_obj(value)

the predicate returns true if its argument is an object.
Objects are implemented using processes so if a value x satisfies @is_obj, then it satisfies

@is_exec (but all execs are not objs).
See also {!Library/Functions/predicates_functions.list!}

@is_obj_xxx(value)

where xxx is the name (without the prefix obj::) of an object defined through @obj_def.
This predicate is automatically generated with an object definition and checks that a value
represents an instance of obj::xxx.

See also {!Library/Functions/predicates_functions.list!}

@is_prefix(s1:string, s2:string)
@is_prefix(s1:string, s2:string, cmp:fct)
@is_prefix(t1:tab, t2:tab)
@is_prefix(t1:tab, t2:tab, cmp:fct)

[@is_prefix] is an overloaded function. See also [@is_suffix] and [@is_subsequence].

@is_prefix(s1:string, s2:string)

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 375

returs true if string s1is a prefix of s2.

@is_prefix(s1:string, s2:string, cmp:fct)

the predicate returns true if s1 is a prefix of s2 where the characters are compared with
the function cmp (taking two arguments). The characters are passed to the function cmp as
strings of length one.

@is_prefix(t1:tab, t2:tab)

the predicate returns true if t1 is a prefix of t2, that is, if the elements of t1 are the
initial elements of t2.

@is_prefix(t1:tab, t2:tab, cmp:fct)

same as the previous version but the function is used to test the equality between the
elements, instead of the usual comparison between values. For example:

@fun_def cmp($x, $y) { $x > $y }
@is_prefix([11, 22], [5, 6, 7], @cmp) -> true

true is returned because @cmp(11, 6) and @cmp(22, 7) hold.

See also {!Library/Functions/predicates_functions.list!}

@is_proc(value)

the predicate returns true if its argument is a process definition. Notice that a proc refers
to a processs definition and not to a runing instance of this definition: it is not an exec

See also {!Library/Functions/predicates_functions.list!}

@is_string(value)

the predicate returns true if its argument is a string.
See also {!Library/Functions/predicates_functions.list!}

@is_subsequence(s1:string, s2:string)
@is_subsequence(s1:string, s2:string, cmp:fct)
@is_subsequence(t1:tab, t2:tab)
@is_subsequence(t1:tab, t2:tab, cmp:fct)

[@is_subsequence] is an overloaded function. See also the functions [@is_suffix] and
[@is_prefix].

376 CHAPTER 21. INDEX

antescofo @is_subsequence(s1:string,
s2:string) the function returns the index of the
first occurrence of string s1 in string s2. A
negative value is returned if s1 does not occurs in
s2.
antescofo @is_subsequence(s1:string,
s2:string, cmp:fct) same as above but the
argument cmp is used to compare the characters of
the strings (represented as strings of only one
element).

@is_subsequence(t1:tab, t2:tab)

the predicate returns the index of the first occurrence of the elements of t1 as a sub-sequence
of the elements of t2. A negative value is returned if t2 does not appear as a subsequence of
tab t2. For example

@is_subsequence([], [1, 2, 3]) -> 0
@is_subsequence([1, 2, 3], [1, 2, 3]) -> 0

@is_subsequence([1], [1, 2, 3]) -> 0
@is_subsequence([2], [1, 2, 3]) -> 1
@is_subsequence([3], [1, 2, 3]) -> 2

@is_subsequence([1, 2], [0, 1, 2, 3]) -> 1

antescofo @is_subsequence(t1:tab,
t2:tab, cmp:fct) same as the version above
but the function cmp is used to compare the
elements of the tabs.

See also {!Library/Functions/predicates_functions.list!}

@is_suffix(s1:string, s2:string)
@is_suffix(s1:string, s2:string, cmp:fct)
@is_suffix(t1:tab, t2:tab)
@is_suffix(t1:tab, t2:tab, cmp:fct)

[@is_suffix] is an overloaded function. See also the functions [@is_subsequence] and
[@is_prefix].

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 377

antescofo @is_suffix(s1:string,
s2:string) the predicate returns true if string
s1 is a suffix of string s2.
antescofo @is_suffix(s1:string,
s2:string, cmp:fct) the predicate returns
true if string s1 is a suffix of string s2 where the
characters are compared with the function cmp.
The characters are passed to the function cmpq as
strings of length one.

@is_suffix(t1:tab, t2:tab)

the predicate returns true if the sequence of elements of t1 is a suffix of the sequence of
element of t2.

@is_suffix(t1:tab, t2:tab, cmp:fct)

same as the previous version but the function cmp is used to test the equality between the
elements, instead of the usual comparison between values. For example:

@fun_def cmp($x, $y) { $x < $y }
@is_suffix([1, 2], [5, 6, 7], @cmp) ->true

true is returned because @cmp(1, 6) and @cmp(2, 7) hold.

See also {!Library/Functions/predicates_functions.list!}
(t1:tab, t2:tab, cmp:fct): same as the previous version but the function is used to test the

equality between the elements, instead of the usual comparison between values. For example:

@fun_def cmp($x, $y) { $x < $y }
@is_suffix([1, 2], [5, 6, 7], @cmp) ->true

is returned because and hold.

@is_symbol(value)

the predicate returns true if its argument is a symbol. Symbvol appears as Max/PD
identifiers.

See also {!Library/Functions/predicates_functions.list!}

@is_tab(value)

378 CHAPTER 21. INDEX

the predicate returns true if its argument is a tab (an indexed sequence of values).
See also {!Library/Functions/predicates_functions.list!}

@is_undef(value)

the predicate returns true if its argument is the undefined value. Do not mismatch with
the negation of the predicate [@is_defined].

See also {!Library/Functions/predicates_functions.list!}

@is_vector(value) ; deprecated

deprecated

@lace(t:tab, n:numeric)

builds a new tab whose elements are interlaced sequences of the elements of the t subcol-
lections, up to size n.

@lace([[1, 2, 3], 6, ["foo", "bar"]], 9)

returns

[1, 6, "foo", 2, 6, "bar", 3, 6, "foo"]

the first elements is taken in the first element of t, the second in the second element of t,
etc., in a cyclic way, until 9 elements have been acquired. Scalar elements are extended to tab
of constants and element in a subcollection are taken modulo the size of the subcollection.

See also {!Library/Functions/tab_functions.list!}

@last(tab)

returns the last element of a tab, or undef.
Some other functions handle tab as lisp lists: [@car], [@cdr], [@concat], [@cons], [@empty],

[@drop], [@take].
See also {!Library/Functions/tab_functions.list!}

@linearize(nim, tol:numeric)

build a new nim that approximates the argument. The new nim uses only linear interpolation
and homogeneous breakpoints. An adaptive sampling step achieves an approximation within
tol (i.e. for any point in the domain, the images of the nim argument and the image of the
resulting nim are withing tol) .

The result is a linear homogeneous nim.
The application of the @linearize function can be time consuming and care must be

taken to not perturb the real-time computations, e.g., by precomputing the linearization: see
[eval_when_load] clause and function [@loadvalue].

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 379

See also [@align_breakpoints], [@sample] and the nim simplification functions: [@sim-
plify_radial_distance_t], [@simplify_radial_distance_v], [@simplify_lang_v], [@filter_median_t],
[@filter_min_t], [@filter_max_t], [@window_filter_t]

In the figure below, the diagram at the top left shows a vectorial nim with two components:

• the effect of @sample is pictured at top right,

• the effect of @align_breakpoints is sketched at bottom left,

• and the effect of @linearize is illustrated at bottom right.

Figure 21.3: the effect of @sample, @align_breakpoints and @linearize on a nim

@listify(map)

returns the range of its argument as a list, i.e. the returned map is obtained by replacing
the keys in the arguments by consecutive integers starting from 1.

See also {!Library/Functions/map_functions.list!}

@loadvalue(*file*:string)

380 CHAPTER 21. INDEX

read a file produced by a call to the function [@savevalue] and returns the value that was
saved. If something goes wrong, an undefined value is returned. See also function [@loadvar]
for an example and the related functions [@dumpvar] and [@dump].

A call to this function may take a noticeable time depending on the size of the values to
store in the dump file. While this time is usually negligible, loading a tab of 10000 integers
represents a file of size about 60Kb and takes between 2ms and 3ms. This computational cost
may have a negative impact on the audio processing in heavy cases. However, the intended
use of and functions is to restore a “preset” at isolated places like the beginning of the score
(see eval_when_load clauses) or between musical sequences, a usage where this cost should
have no impact. Notice that saving a value or variables is done asynchronously and does not
disturb the “main” computation. See the remarks of function [@dump].

See also {!Library/Functions/system_functions.list!}

@loadvar(*file*:string)

read a file produced by a call to [@dump] (or [@dumpvar]) and set the value of the
corresponding variables.

The basic use of is to recover values of global variables that have been previously saved
with a [@dump] command. If the loaded variable is not defined at the calling point, a new
global variable is implicitly defined by [@loadvar]. If the variable with the same name exist at
the calling point, either global or local, this variable will be set with the saved value.

To be more precise, when [@dump] is called, the name of the variables in the arguments
list are stored as well as the corresponding values in file. The variables in the argument list
can be global or local variable.

When [@loadvar] is called, it is called in some scope sc. Each identifier in the dump file
is searched in the current scope sc. If not found, the englobing scope is looked up, and the
process is iterated until a variable is found or until reaching the global scope. If no global
variable with the same identifier is found, a new global variable with this identifier is created.
The value associated to the identifier is used to set the selected variable.

Beware that [@loadvar] does not trigger the whenever.
Nota Bene: because [@loadvar] can be called in a context which differs from the context of

the call of [@dump], there is no reason that the ’same’ variables will be set.
Here is an example:

@global $a, $b, $c
$a := 1
$b := 2
$c := 3
$ret := @dump("/tmp/dump1", $a, $b, $c)
$a := 0
$b := 0
$c := 0
Group G1
{

@local $b
$b := 22

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 381

Group G2
{

@local $c
$c := 33
$ret := @loadvar("/tmp/dump1")
print $a $b $c ; print 1 2 3

}
print $a $b $c
; print 1 2 0
; because the variable $c set by @loadvar is in G1

}
print $a $b $c ; print 1 0 0

$ret := @loadvar("/tmp/dump1")
print $a $b $c ; print 1 2 3

In this example, the values of the global variables $a, $b and $c are saved by the [@dump]
special form in file /tmp/dump1. The [@loadvar] is done in a context where a local variables
$band $c hidde the global ones and these local variable (with global variable $a) will be
affected by the [@loadvar] command.

See also {!Library/Functions/system_functions.list!}

@log(numeric)

computes the value of the natural logarithm of its argument.
See also {!Library/Functions/math_functions.list!}

@log10(numeric)

computes the value of the logarithm of its argument to base 10.
See also {!Library/Functions/math_functions.list!}

@log2(numeric)

computes the value of the logarithm of its argument to base 2.
See also {!Library/Functions/math_functions.list!}

@make_bpm_map()
@make_bpm_map(start:numeric)
@make_bpm_map(start:numeric, stop:numeric)

returns a map where the BPM of the ith event of the score, is associated to i (the keys of
the map are the ranks of the events). Called with no arguments, the events considered are all
the events in the score.

With start, only the events whose position in beat is greater than start are considered.
If a stop is specified, all events must have a position in beat between start and stop.

382 CHAPTER 21. INDEX

Nota Bene: The numbering of musical events starts at 1. Grace notes, i.e. musical event
with a bpm of 0, do not appear in the map and does not count in the ranking.

For example

NOTE D6 1 event1
NOTE C7 0 event2
NOTE D6 1/2 event3
BPM 30
NOTE C7 1/5
CHORD (D1 A7 Eb7) 1/8 event5
trill (CC6 D7 A7) 1/8 event6

with this score, @make_bpm_map() will return:

MAP{ (1, 60.0), (2, 60.0), (3, 30.0), (4, 30.0), (5, 30.0) }

Notice the grace note C7 which does not appear in the map.
See also {!Library/Functions/score_functions.list!}

@make_bpm_tab()
@make_bpm_tab(start:numeric)
@make_bpm_tab(start:numeric, stop:numeric)

returns a tab whose ith element is the BPM of the ith musical event in the score.
Called with no arguments, the events considered are all the events in the score. With a

start, only the events whose position in beats is greater than start are considered. If a
stop is specified, all events must have a position in beats between start and stop. Grace
events do not appear in the tab.

Examples:

NOTE D6 1
NOTE C7 0
NOTE D6 1/2
BPM 30
NOTE C7 1/5
CHORD (D1 A7 Eb7) 1/8
Trill (CC6 D7 A7) 1/8 event6

With this score, @make_bpm_tab returns:

TAB[60.0, 60.0, 30.0, 30.0, 30.0]

Function [@make_duration_tab] can be used to complete the bpm information with the
duration information for an event.

See also {!Library/Functions/score_functions.list!}

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 383

@make_duration_map()
@make_duration_map(start:numeric)
@make_duration_map(start:numeric, stop:numeric)

returns a map where the duration (in beat) of the i th event of the score, is associated to
i (the keys of the map are the ranks of the events). Called with no arguments, the events
considered are all the events in the score.

With start, only the events whose position in beat is greater than start are considered.
If a stop is specified, all events must have a position in beat between start and stop.
Nota Bene: The numbering of musical events starts at 1. Grace notes, i.e. musical event

with a duration of 0, do not appear in the map and does not count in the ranking.
For example

NOTE C7 0 mes2
NOTE D6 1/2
NOTE C7 1/5
NOTE Eb7 2/5
NOTE G#6 1/2
CHORD (D1 A7) 1/8 mes2_2
NOTE C2 1/8

with this score, @make_duration_map() will return:

MAP{ (1, 0.5), (2, 0.2), (3, 0.4), (4, 0.5), (5, 0.125), (6, 0.125) }

Notice the grace note C4which does not appear in the map.
See also {!Library/Functions/score_functions.list!}

@make_duration_tab()
@make_duration_tab(start:numeric)
@make_duration_tab(start:numeric, stop:numeric)

returns a tab whose ith element is the duration in beats the ith musical event in the score.
Called with no arguments, the events considered are all the events in the score. With a

start, only the events whose position in beats is greater than start are considered. If a
stop is specified, all events must have a position in beats between start and stop. Grace
events do not appear in the tab.

Examples:

NOTE D6 1
NOTE C7 0
NOTE D6 1/2
NOTE C7 1/5
CHORD (D1 A7 Eb7) 1/8
Trill (CC6 D7 A7) 1/8 event6

384 CHAPTER 21. INDEX

With this score, @make_duration_tab returns:

TAB[1.0, 0.5, 0.2, 0.125, 0.125]

Function [@make_bpm_tab] can be used to get the information necessary to translate the
relative duration in absolute duration.

See also {!Library/Functions/score_functions.list!}

@make_label_bpm()
@make_label_bpm(start:numeric)
@make_label_bpm(start:numeric, stop:numeric)

returns a map associating the event labels to the BPM at this point in the score. Events
with no label or with a zero duration (grace note) do not appear in the map.

Called with no arguments, the events considered are all the events in the score. With
start, only the events whose position (in beats) is greater than start are considered. If a
stop is also specified, all events must have a position between start and stop.

For example, with this score:

NOTE D6 1 event1
NOTE C7 0 event2
BPM 120
NOTE D6 2 event3
NOTE C7 2
CHORD (D1 A7 Eb7) 4 event5
BPM 30
trill (CC6 D7 A7) 2 event6

the call @make_label_bpm() returns

MAP{ ("event1", 1.0), ("event3", 0.5), ("event5", 0.5), ("event6", 2.0) }

BEWARE: Contrary to the functions [@make_bpm_tab] and [@make_bpm_tab] and
despite the function name, the value associated to the key in the returned map is not in BPM
but is second per beat, i.e. 60

bpm . This is expected to change.
See also {!Library/Functions/score_functions.list!}

@make_label_duration()
@make_label_duration(start:numeric)
@make_label_duration(start:numeric, stop:numeric)

returns a map associating to the label of an event, the duration of this event. Events with
no label do not appear in the map.

Called with no arguments, the events considered are all the events in the score. With a
start, only the events whose position in beats is greater than start are considered. If a
stop is specified, all events must have a position in beats between start and stop.

See also {!Library/Functions/score_functions.list!}

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 385

@make_label_pitches()
@make_label_pitches(start:numeric)
@make_label_pitches(start:numeric, stop:numeric)

returns a map associating a vector of pitches to the label of an event. A NOTE corresponds
to a tab of size 1, and a CHORDS with n pitches to a tab of size n. Events with no label do
not appear in the map, as well as grace notes.

Called with no arguments, the events considered are all the events in the score. With a
start, only the events whose position in beats is greater than start are considered. If a
stop is specified, all events must have a position in beats between start and stop.

Examples:

NOTE D6 1 event1
NOTE C7 0 event2
NOTE D6 1/2 event3
NOTE C7 1/5
CHORD (D1 A7 Eb7) 1/8 event5
TRILL (CC6 D7 A7) 1/8 event6

with this score, @make_label_pitches returns:

MAP{ ("event1", TAB[8600.0]),
("event3", TAB[8600.0]),

("event5", TAB[2600.0, 10500.0, 9900.0]),
("event6", TAB[1206.0, 9800.0, 10500.0]) }

See also {!Library/Functions/score_functions.list!}

@make_label_pos()
@make_label_pos(start:numeric)
@make_label_pos(start:numeric, stop:numeric)

this function returns a map whose keys are the labels of the events and the value, the
position in beats of the events. Events with no label do not appear in the map, as well as
grace notes.

Called with no arguments, the events considered are all the events in the score. With a
start, only the events whose position in beats is greater than start are considered. If a
stop is specified, all events must have a position in beats between start and stop.

Examples:

NOTE D6 1 event1
NOTE C7 0 event2
NOTE D6 1/2 event3
NOTE C7 1/5
CHORD (D1 A7 Eb7) 1/8 event5
TRILL (CC6 D7 A7) 1/8 event6

386 CHAPTER 21. INDEX

with this score, @make_label_pos() returns:

MAP{ ("event1", 0.0), ("event3", 1.0), ("event5", 1.7), ("event6", 1.825) }

See also {!Library/Functions/score_functions.list!}

@make_pitch_tab()
@make_pitch_tab(start:numeric)
@make_pitch_tab(start:numeric, stop:numeric)

returns a tab whose i th element is the vector of pitches to the i th musical event in the
score. A NOTE corresponds to a tab of size 1, and a CHORDS with n pitches to a tab of size n.
Grace notes are not counted.

Called with no arguments, the events considered are all the events in the score. With a
start, only the events whose position in beats is greater than start are considered. If a
stop is specified, all events must have a position in beats between start and stop.

Grace notes do not appear in the tab.
Examples:

NOTE D6 1
NOTE C7 0
NOTE D6 1/2
NOTE C7 1/5
CHORD (D1 A7 Eb7) 1/8
TRILL (CC6 D7 A7) 1/8 event6

With this score, @make_pitch_tab returns:

TAB[TAB[8600.0],
TAB[8600.0],
TAB[9600.0],
TAB[2600.0, 0500.0, 9900.0],
TAB[1206.0, 9800.0, 10500.0]]

See also {!Library/Functions/score_functions.list!}

@make_score_map()
@make_score_map(start:numeric)
@make_score_map(start:numeric, stop:numeric)

returns a map where the keys are the rank i of the musical events and the value, the position
in beat of the i th event. Called with no arguments, the events considered are all the events in
the score. With start, only the events whose position in beats is greater than start are
considered. If a stop is specified, all events must have a position between start andstop‘.

See also {!Library/Functions/score_functions.list!}

@map(f:function, t:tab)

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 387

returns a tab such that element i is the result of applying f to element t[i]. Note that
the computation is equivalent to

[f($x) | $x in t]

See also [@scan] and [@reduce] for other tab-morphisms.
See also {!Library/Functions/tab_functions.list!}
Note that function [@map] is relatd to tab, not to map: see [@map_compose] and

[@map_concat] for map related functions.

@map_compose(a:map, b:map)

returns the composition of functions a and c, that is, a map c such that

c(x) == b(a(x))

See also function [@mapval] to compose a map and a function and [@merge].
See also {!Library/Functions/map_functions.list!}

@map_concat(a:map, b:map) ; deprecated

deprecated
See also {!Library/Functions/map_functions.list!}

@map_history(variable)

This is a special form: the argument must be a variable identifier. It returns a map where
the keys are integers and the values are the successive values assigned to the variable. Integer
0 corresponds to the current value, 1 to the previous value, etc. Variable’s history has a
bounded length that can be specified using a @localor a@global declaration.

See also [@tab_history], [@map_history_date] and [@map_history_rdate].
See also {!Library/Functions/system_functions.list!}

@map_history_date(variable)

This is a special form: the argument must be a variable identifier. It returns a map
where the keys are integers and the values are the date in physical times of the successive
assignements to the variable. Integer 0 corresponds to the current value, 1 to the previous
value, etc. Variable’s history has a bounded length that can be specified using a @localor
a@global declaration.

See also [@tab_history], [@map_history] and [@map_history_rdate].
See also {!Library/Functions/system_functions.list!}

@map_history_rdate(variable)

388 CHAPTER 21. INDEX

This is a special form: the argument must be a variable identifier. It returns a map where
the keys are integers and the values are the date in relative time (beats) of the successive
assignements to the variable. Integer 0 corresponds to the current value, 1 to the previous
value, etc. Variable’s history has a bounded length that can be specified using a @localor
a@global declaration.

See also [@tab_history], [@map_history] and [@map_history_date].
See also {!Library/Functions/system_functions.list!}

@map_normalize(map) ; deprecated

deprecated
See also {!Library/Functions/map_functions.list!}

@map_reverse(map) ; deprecated

deprecated
See also {!Library/Functions/map_functions.list!}

@mapval(a:map, b:function)

returns the composition of function a and c, that is, a map c such that

c(x) == b(a(x))

See also [@map_compose] and [@merge].
See also {!Library/Functions/map_functions.list!}

@max(value, value)

return the maximum of its two arguments.
Values in Antescofo are totally ordered. The order between two elements of different types

is implementation dependent. However, the order on numeric is as expected (numeric ordering:
the integers are embedded in the decimals). For two argument of the same type, the ordering
is as expected (lexicographic ordering for string, and tab, etc.).

See [@min], [@min_key], [@max_key], [@min_val], [@max_val], [@sort].

@max_key(nim)

returns the coordinate x_n of the last breakpoint of the nim. This coordinate is the sum
of x_0 (the coordinate of the first breakpoint of the nim, and of all intervals d_i of the
breakpoints i. If the nim is vectorial, x_n is a tab.

See also [@min_key], [@min_val] and [@max_val].
See also {!Library/Functions/nim_functions.list!}

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 389

@max_val(tab)
@max_val(map)
@max_val(nim)

This overloaded functions returns the maximal element in the tab if it is a tab, and the
maximal element in the range if the argument is a map or a nim.

If the argument is empty, a undef value is returned.
See [@max], [@range].
See also {!Library/Functions/tab_functions.list!}
See also {!Library/Functions/map_functions.list!}
See also {!Library/Functions/nim_functions.list!}

@median(tab)

computes the median of the tab’s element. The median of a list of numbers can be found
by arranging all the numbers from lowest value to highest value and picking the middle one.
For example, the median of [11, 5, 3, 3, 9] is 5.

See also {!Library/Functions/tab_functions.list!}

@member(tab, value)
@member(map, value)
@member(string, value)

returns true if the second argument is an element of the first. For a map, the second
arguments refers to a value stored in the dictionary. For string, the value must be a character,
i.e. a string of size 1.

See also [@is_prefix], [@is_suffix], [@is_subsequence], [@find] and [@occurs].
See also {!Library/Functions/predicates_functions.list!}

@merge(map, map)

returns a new map which is the asymetric merge of the two argument maps.
The result of @merge(a, b) is a map c such that c(x) = a(x) if a(x) is defined, and

b(x) elsewhere.
Notice that a(x) is defined if x is a key in a but the value a(x) may be the undef value.
See also [@map_compose] and [@mapval].
See also {!Library/Functions/map_functions.list!}

@min(value, value)

return the minimal value of its two arguments.
Values in Antescofo are totally ordered. The order between two elements of different types

is implementation dependent. However, the order on numeric is as expected (numeric ordering:
the integers are embedded in the decimals). For two argument of the same type, the ordering
is as expected (lexicographic ordering for string, and tab, etc.).

See [@max], [@min_key], [@max_key], [@min_val], [@max_val], [@sort].

390 CHAPTER 21. INDEX

@min_key(nim)

returns the coordinate x_0 of the initial breakpoint of the nim argument. If the nim is
vectorial, x_0 is a tab.

See also [@max_key], [@min_val] and [@max_val].
[@min_key], [@min_val] and [@max_val].
See also {!Library/Functions/nim_functions.list!}

@min_val(tab)
@min_val(map)
@min_val(nim)

This overloaded functions returns the minimal element in the tab if it is a tab, and the
minimal element in the range if the argument is a map or a nim.

If the argument is empty, a undef value is returned.
See [@min] and [@range].
See also {!Library/Functions/tab_functions.list!}
See also {!Library/Functions/map_functions.list!}
See also {!Library/Functions/nim_functions.list!}

@normalize(tab)
@normalize(tab, min:numeric, max:numeric)

returns a new tab with the elements normalized between min and max. If they are omitted,
they are assumed to be 0 and 1.

If an element of the tab is not a numeric, undef is returned.
See also {!Library/Functions/tab_functions.list!}

@number_active(string)
@number_active(proc)
@number_active()

returns the number of active (alive) instances of a process or an object specified through
its name (a string with or without the prefix :: or obj::) or through its proc value. With
no argument returns the number of concurrent runing processes.

See also [@active]

@occurs(tab, value)
@occurs(map, value)
@occurs(string, value)

returns the first index or the first key whose value equals the second argument. For example

@occurs(["a", "b", "c", "a", "b"], "b") -> 1
@occurs("xyz", "z") -> 2
@occurs(map{ ("zero", 0), ("null", 0), ("void", 0) }, 0) -> "null"

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 391

In the last example, the answer "null" is returned because {"null" < "void" <
"zero".

See also [@count], [@find], [@is_prefix], [@is_subsequence], [@is_suffix] and [@member].
See also {!Library/Functions/predicates_functions.list!}

@permute(t:tab, n:numeric)

returns a new tab which contains the n th permutations of the elements of t. They are
factorial s permutations, where s is the size of t.

The first permutation is numbered 0 and corresponds to the permutation which rearranges
the elements of t in an array t_0 such that they are sorted increasingly. The tab t_0 is
the smallest element amongst all tab that can be done by rearranging the element of t. The
first permutation rearranges the elements of in a tab t_1 such that t_0 < t_1 for the
lexicographic order and such that any other permutation gives an array t_k lexicographicaly
greater than t_0 and t_1. Etc. The last permutation (factorial s - 1) returns a tab where all
elements of are in decreasing order.

For example:

$t := [1, 2, 3]
@permute($t, 0) == [1, 2, 3]
@permute($t, 1) == [1, 3, 2]
@permute($t, 2) == [2, 1, 3]
@permute($t, 3) == [2, 3, 1]
@permute($t, 4) == [3, 1, 2]
@permute($t, 5) == [3, 2, 1]

See also [@sort].
See also {!Library/Functions/tab_functions.list!}

@plot(variable_1, ..., variable_p)

is a special form (the arguments are restricted to be variables).
Calling this special form plots the values stored in the history of the variables as time series

in absolute time using the [@gnuplot] function.
See also [@rplot].

@pow(x:numeric, y:numeric) ; listable

computes x raised to the power y.
See also {!Library/Functions/math_functions.list!}

@projection(nim, p:numeric)

extracts the p th component of a vectorial nim.
See also [@aggregate].
See also {!Library/Functions/nim_functions.list!}

392 CHAPTER 21. INDEX

@push_back(tab, value)
@push_back(nim:NIM, d:numeric, y1:numeric)
@push_back(nim:NIM, d:numeric, y1:numeric, it:string)
@push_back(nim:NIM, y0:numeric, d:numeric, y1:numeric)
@push_back(nim:NIM, y0:numeric, d:numeric, y1:numeric, it:string)

[@push_back] is an impure overloaded function. See also [@push_front].

antescofo @push_back(tab, value) add the second argument at
the end of the first argument. The first argument, modified by side-effect, is
the returned value.
Usually, [@push_front] is sightly more efficient thant [@push_back].

@push_back(nim:NIM, d:numeric, y1:numeric, it:string)

add a breakpoint as the last breakpoint of nim. The first argument, modified by side-effect,
is the nim, which is also the returned value.

The argument d specifies the length of the interpolation since the previous breakpoint, y1
is the final value attained at the end of the breakpoint, and it is the interpolation type. The
interpolation type can be omitted: in this case, the interpolation is linear. The initial value
y0 of the breakpoint is the y1 value of the previous breakpoint.

antescofo @push_back(nim:NIM, y0:numeric, d:numeric,
y1:numeric, it:string) similar to the previous function but y0 is
explicitly given, making possible to specify discontinuous nim.

See also {!Library/Functions/tab_functions.list!}
See also {!Library/Functions/nim_functions.list!}

@push_front(tab, value)

add the second argument at the beginning of its first argument. The first argument, modified
by side-effect, is the returned value.

Usually, [@push_front] is sightly more efficient thant [@push_back].
See also {!Library/Functions/tab_functions.list!}

@rand()

[@rand] is an impure function returning a random number between 0 and 1 (included).
[@rand] is similar to [@random] but rely on a different algorithm to generate the random

numbers.
See also {!Library/Functions/random_functions.list!}

@rand_int(int)

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 393

returns a random integer between 0 and its argument (excluded). This is not a pure function
because two calls with the same argument are likely to return different results.

See also {!Library/Functions/random_functions.list!}

@random()

[@random] is an impure function returning a random floating point number between 0 and
1 (included). This is not a pure function because two successive calls are likely to return
different results.

The resolution of this random number generator is 1/(2ˆ31 - 1), which means that the
minimal step between two numbers in the images of this function is 1/(2ˆ31 - 1).

[@random] is similar to [@rand] but relies on a different algorithm to generate the random
numbers. See also [@rand_int].

See also {!Library/Functions/random_functions.list!}

@range(m:map)

returns the tab of the values present in the map. The order in the tab is irrelevant.
See also [@domain]
See also {!Library/Functions/map_functions.list!}

@reduce(f:function, t:tab)

If t is empty, an undefined value is returned.
If t has only one element, this element is returned.
In the other case, the binary operation is used to combine all the elements in t into a single

value

f(... f(f(t[0], t[1]), t[2]), ... t[n])

For example, if t is a vector of booleans, @reduce(@||, t) returns the logical
disjunction of thet‘’s elements.

@remove(t:tab, n:numeric)
@remove(m:map, k:value)

[@remove] is an impure overloaded function. See also [@insert].

@remove(t:tab, n:numeric)

removes the element at index n in t (t is modified in place).
Note that building a new tab by removing elements satisfying some property P is easy with

a comprehension:

[$x | $x in t, P]

which builds a new tab, leavingt untouched.

394 CHAPTER 21. INDEX

antescofo @remove(m:map, k:value)
removes the entry k in map (m is modified in
place). Does nothing if the key k is not
present in map .

See also {!Library/Functions/tab_functions.list!}
See also {!Library/Functions/map_functions.list!}

@remove_duplicate(t:tab)

keep only one occurrence of each element in t. Elements not removed are kept in order
and t is modified in place.

See also {!Library/Functions/tab_functions.list!}

@replace(t:tab, find:value, rep:value)

returns a new tab in which a number of elements have been replaced by another.
The argument find represents a sub-sequence to be replaced: if it is not a tab, then all

the occurrences of this value at the top-level of t are replaced by rep:

$t := [1, 2, 3, [2]]
@replace($t, 2, 0) -> [1, 0, 3, [2]]

If find is a tab, then the replacement is done on sub-sequence of t:

@replace([1, 2, 3, 1, 2], [1, 2], 0) -> [0, 3, 0]

Note that the replacement is done eagerly: the first occurrence found is replaced and the
replacement continue on the rest of the tab. Thus, there is no ambiguity in case of overlapping
sub-sequences, only the first is replaced:

@replace([1, 1, 1, 2], [1, 1], 0) -> [0, 1, 2]

If the argument ‘rep is a tab, then it represents at sub-sequence to be inserted in place of
the occurrences of find. So, if the replacement is a tab, it must be wrapped into a tab:

@replace([1, 2, 3], 2, [4,5]) -> [1, 4, 5, 3]
@replace([1, 2, 3], 2, [[4, 5]]) -> [1, [4, 5], 3]

See also {!Library/Functions/tab_functions.list!}

@reshape(t:tab, s:tab)

builds a tab of shape s with the element of tab t. These elements are taken circularly one
after the other. For instance

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 395

@reshape([1, 2, 3, 4, 5, 6], [3, 2]) -> [[1, 2], [3, 4], [5, 6]]

the result has shape 3×2 and the elements are the elmeents taken in [1, 2, 3, 4, 5,
6].

See also {!Library/Functions/tab_functions.list!}

@resize(t:tab, int)

resizes its first argument and returns the results. The argument is modified. If the second
argument is smaller that the size of the first argument, it effectively shrinks the first argument.
If it is greater, undefined values are used to extend the tab.

See also {!Library/Functions/tab_functions.list!}

@reverse(tab)
@reverse(string)

returns a new tab or a new string where the elements (characters) are given in the reverse
order.

See also {!Library/Functions/tab_functions.list!}
See also {!Library/Functions/string_functions.list!}

@rnd_bernoulli(p:float)

returns a boolean random generator with a probability p to have a true value. For example

$bernoulli60 := @rnd_bernouilli(0.6)
$t := [$bernoulli60() | (1000)]

produces a tab of 1000 random boolean values with a probability of 0.6 to be true.

Random Generators

The members of the @rnd_distribution family return a random generator in the form
of an impure function f taking no argument. Each time f is called, the value of a ran-
dom variable following the distribution distribution is returned. The arguments of
the @rnd_distribution are the parameters of the distribution. Two successive calls to
@rnd_distribution returns two different random generators for the same distribution,
that is, generators with unrelated seeds.

See also {!Library/Functions/random_functions.list!}

@rnd_binomial(t:int, p:float)

returns a random generator that produces integers according to a binomial discrete distri-
bution P of parameters tand p‘:

P(i, | t, p) = \binom{t}{i} . p^i . (1 - p)^(t-i), i \ensuremath{\geq} 0.

396 CHAPTER 21. INDEX

See [@rnd_bernoulli] for a description of random generators.
See also {!Library/Functions/random_functions.list!}

@rnd_exponential(\ensuremath{\lambda}:float)

returns a random generator that produces floats x according to an exponential distribution
P of parameter λ:

P(x | \ensuremath{\lambda}) = \ensuremath{\lambda} e^(-\ensuremath{\lambda} x), x > 0.

See [@rnd_bernoulli] for a description of random generators.
See also {!Library/Functions/random_functions.list!}

@rnd_gamma(\ensuremath{\alpha}:float)

returns a random generator that produces floating-point values according to a gamma
distribution P:

P(x | \ensuremath{\alpha}) = x^(\ensuremath{\alpha}-1) / \ensuremath{\Gamma}(\ensuremath{\alpha}), x \ensuremath{\geq} 0.

See [@rnd_bernoulli] for a description of random generators.
See also {!Library/Functions/random_functions.list!}

@rnd_geometric(p:int)

returns a random generator that produces integers following a geometric discrete distribution:

P(i | p) = p (1 - p)^i, i \ensuremath{\geq} 0.

See [@rnd_bernoulli] for a description of random generators.
See also {!Library/Functions/random_functions.list!}

@rnd_normal(\ensuremath{\mu}:float, \ensuremath{\sigma}:float)

returns a random generator that produces floating-point values according to a normal
distribution P:

P(x | \ensuremath{\mu}, \ensuremath{\sigma}) = 1/(\ensuremath{\sigma} \sqrt{2 \ensuremath{\pi}}) e^{- (x - \ensuremath{\mu})^2/(2 \ensuremath{\sigma}^2)}

See [@rnd_bernoulli] for a description of random generators.
See also {!Library/Functions/random_functions.list!}

@rnd_uniform_float(a:float, b:float)

returns a generator giving float values according to a uniform distribution P:

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 397

P(x | a, b) = 1/(b - a), a \ensuremath{\leq} x < b

See [@rnd_bernoulli] for a description of random generators.
See also {!Library/Functions/random_functions.list!}

@rnd_uniform_float(a:int, b:int)

returns a generator giving int values according to a uniform distribution P:

P(x | a, b) = 1/(b - a + 1), a \ensuremath{\leq} x \ensuremath{\leq} b

See [@rnd_bernoulli] for a description of random generators.
See also {!Library/Functions/random_functions.list!}

@rotate(t:tab, n:int)

build a new tab which contains the elements of t circularly shifted by n. If n is positive
the element are right shifted, else they are left shifted.

@rotate([1, 2, 3, 4], -1) == [2, 3, 4, 1]
@rotate([1, 2, 3, 4], 1) == [4, 1, 2, 3]

See also {!Library/Functions/tab_functions.list!}

@round(numeric)

returns the integral value nearest to its argument rounding half-way cases away from zero,
regardless of the current rounding direction.

See also {!Library/Functions/math_functions.list!}

@plot(variable_1, ..., variable_p)

is a special form (the arguments are restricted to be variables).
Calling this special form plots the values stored in the history of the variables as time series

in relative time using the [@gnuplot] function.
See also [@plot].

@sample(nim, n:integer)

build a new nim with linear interpolation type by sampling each component with n points
equally spaced between the first and the last breakpoint.

The result is a nim with linear interpolation type for all component, irrespectively of
the interpolation type of the nim argument. The resulting nim can be seen as a linear
approximation of the original curve.

398 CHAPTER 21. INDEX

The sampling is made component by components, so the results is not necessarily homoge-
neous. The function [@align_breakpoints] can be used on a nim with linear interpolation type
to obtain an equivalent nim with homogeneous breakpoints

The approximation made with sampling on n points is not always satisfactory because the
variation of the nim can differ greatly between two intervals. The function [@linearize] uses
an adaptive sampling step to linearize the nim, to align the breakpoints and to achieve an
approximation within a given tolerance .

See also [@align_breakpoints], [@sample] and the nim simplification functions: [@sim-
plify_radial_distance_t], [@simplify_radial_distance_v], [@simplify_lang_v], [@filter_median_t],
[@filter_min_t], [@filter_max_t], [@window_filter_t]

In the figure below, the diagram at the top left shows a vectorial nim with two components:

• the effect of @sample is pictured at top right,

• the effect of @align_breakpoints is sketched at bottom left,

• and the effect of @linearize is illustrated at bottom right.

Figure 21.4: the effect of @sample, @align_breakpoints and @linearize on a nim

@savevalue(s:string, value)

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 399

argument s is interpreted as the path of a file where the value of the second argument is
saved. The format of the file is textual and corresponds to the Antescofo grammar. This value
can then be read using the function [@loadvalue].

See also functions [@dump], [@dumpvar] and [@loadvar].
See also {!Library/Functions/system_functions.list!}

@scan(f:function, t:tab)

returns the tab of the partial reduction by f of the elements of t:

[t[0], f(t[0],t[1]), f(f(t[0], t[1]),t[2]), ...]

For example, the tab of the partial sums of the integers between 0 (included) and 10
(excluded) is computed by the expression:

@scan(@+, [$x | $x in (10)]) -> [0,1,3,6,10,15,21,28,36,45]

If t is empty, the results in undef.
See also [@reduce] and [@map].
See also {!Library/Functions/tab_functions.list!}

@score_tempi()

returns a tab of couples (i.e. tab of size 2). The ith elements correspond to the ith BPM
changes in the score. The value of its element is the tab [position, BPM].

For example

NOTE D6 1 event1
NOTE C7 0 event2
BPM 120
NOTE D6 2 event3
NOTE C7 2
CHORD (D1 A7 Eb7) 4 event5
BPM 30
trill (CC6 D7 A7) 2 event6

with this score, @make_bpm_map() will return:

TAB[TAB[0.0, 60.0],
TAB[1.0, 120.0],

TAB[1.5, 30.0]]

See also {!Library/Functions/score_functions.list!}

@scramble(t:tab)

400 CHAPTER 21. INDEX

builds a new tab where the elements t of have been scrambled (the element are rearranged
in a random order). The function is impure: two calls to the same tab does not produce the
same result. The argument is unchanged.

See also {!Library/Functions/tab_functions.list!}

@select_map(m:map, f:funct)

build a new map containing the entries of m which satisfy predicate f. This predicate takes
two arguments: the key and the value. For instance

@fun_def pred($key, $value) { return ($key > "b") && ($value < 4) }
$m := MAP{ ("a", 1), ("b", 2), ("c", 3), ("d", 4) }
$mm := @select_map($m, @pred)
print $mm

displays MAP{ ("c", 3) }

See also {!Library/Functions/map_functions.list!}

@set_osc_handling_tab(b:bool)

changes the handling of tabs in OSC messages. Arrays are present only in OSC v1.1 and
not present in the initial protocol v1.1. Several implementation ignore the array construction.

By default Antescofo sends the elements of a tab as the successive arguments of a message,
without using the array facilities. A call to @set_osc_handling_tab(true) switches the
behavior to rely on the array feature present in v1.1 : the [and] markers are used to wrap
the sending of the tab elements. Calling the function with a false value enables to switch to
the v1.0 policy.

When receiving a message, array markers are always interpreted as tab delimiters.
Beware that a message as a limited size that depends both on the sender and receiver

implementation limitation. The current Antescofo raw buffer size is 5096. Sending a tab or
receiving an array must fit within one message.

See also {!Library/Functions/system_functions.list!}

@shape(t:value)

returns 0 if is not an array, and else returns a tab of integers each corresponding to the
size of one of the dimensions of t. Notice that the elements of an array are homogeneous, i.e.
they have all exactly the same dimension and the same shape.

See also {!Library/Functions/tab_functions.list!}

@shift_map(m:map, n:numeric)

build a new map containing the entries of m that have a integer key with n added. For
example:

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 401

$m := MAP{ (1, 1), ("a", 1), (1.0, 1)
(2, 2), ("b", 2), (2.0, 2) }

print (@shift_map($m, 11))

displays MAP{ (12, 1), (13, 2) }.
See also {!Library/Functions/map_functions.list!}

@simplify_lang_v(nim, tol:numeric, n:numeric)

build a new simpler nim by aggregating breakpoints using a Lang polyline simplification
algorithm with tolerance tol and sequence size n.

In the simplification process, a breakpoint is assimilated to a d dimensional point for a nim
with dimension d (in other words, the x part of the breakpoint is not taken into account).
This is the case for all nim simplification functions that end with a *_t*.

The Lang simplification algorithm examines a sequence of such points of a fixed length n
(i.e., n successive breakpoints). The first and last points of that sequence specify a segment.
This segment is used to calculate the perpendicular distance to each intermediate breakpoints.
If any calculated distance is larger than the specified tolerance, the search region will be
shrunk by excluding its last point. This process will continue until all calculated distances
fall below the specified tolerance, or when there are no more intermediate breakpoints. All
intermediate brakpoints are removed and a new search sequence is defined starting at the last
point from old search region. This process is illustrated below.

See also [@align_breakpoints], [@sample] and the nim simplification functions: [@sim-
plify_radial_distance_t], [@simplify_radial_distance_v], [@simplify_lang_v], [@filter_median_t],
[@filter_min_t], [@filter_max_t], [@window_filter_t]

See also {!Library/Functions/nim_functions.list!}

@simplify_radial_distance_t(nim, tol:numeric)

builds a new simpler nim by aggregating consecutive breakpoints whose images are wihin a
distance of tol (for each component independently)

In the simplification process, a breakpoint is assimilated to a d dimensional point for a nim
with dimension d (in other words, the x part of the breakpoint is not taken into account).
This is the case for all nim simplification functions that end with a *_t*.

It reduces successive vertices that are clustered too closely to a single vertex, called a key.
The resulting keys form the simplified polyline. This process is illustrated below:

See also [@align_breakpoints], [@sample] and the nim simplification functions: [@sim-
plify_radial_distance_t], [@simplify_radial_distance_v], [@simplify_lang_v], [@filter_median_t],
[@filter_min_t], [@filter_max_t], [@window_filter_t]

See also {!Library/Functions/nim_functions.list!}

@simplify_radial_distance_v(nim, tol:numeric)

builds a new simpler nim by aggregating consecutive breakpoints whose images are wihin a
distance of tol.

402 CHAPTER 21. INDEX

Figure 21.5: the Lang polyline simplification algorithm on a nim

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 403

Figure 21.6: the radial distance simplification algorithm on a nim

In the simplification process, each component is handled separatively and a breakpoint
is assimilated to a 2-dimensional point with coordinate (x, y). This is the case for all nim
simplification functions that end with a *_v*.

It reduces successive vertices that are clustered too closely to a single vertex, called a key.
The resulting keys form the simplified polyline. This process is illustrated below:

See also [@align_breakpoints], [@sample] and the nim simplification functions: [@sim-
plify_radial_distance_t], [@simplify_radial_distance_v], [@simplify_lang_v], [@filter_median_t],
[@filter_min_t], [@filter_max_t], [@window_filter_t]

See also {!Library/Functions/nim_functions.list!}

@sin(numeric)

computes the sine of its argument (measured in radians).
See also {!Library/Functions/math_functions.list!}

@sinh(numeric)

computes the hyperbolic sine of its argument.
See also {!Library/Functions/math_functions.list!}

@size(x:value)

If x is a scalar value, the function returns a strictly negative integer related to the type of
the argument (that is, two scalar values of the same type gives the same result).

If x is a map or a tab, the function returns the number of elements in its argument (which
is a positive integer).

404 CHAPTER 21. INDEX

Figure 21.7: the radial distance simplification algorithm on a nim

If it is a nim, it returns the number of breakpoints of the nim (which is not the dimension
of the nim). Note that a nim with zero breakpoints is the result of a wrong definition.

See also [@shape] and {!Library/Functions/predicates_functions.list!}

@slice(t:tab, n:numeric, m:numeric)

gives the elements of t of indices between n included up to m excluded. If n > m the
element are given in reverse order. So

@slice(t, @size(t), 0)

is equivalent to

@reverse(t)

See also functions [@car], [@cdr], [@drop] and [@take].
See also {!Library/Functions/tab_functions.list!}

@sort(t:tab)
@sort(t:tab, cmp:fct)

The [@sort] function is an impure overloaded function, with a variable number of arguments
(so it cannot be currifyed).

See also [@permute]

antescofo @sort(t:tab) sorts in-place
the elements into ascending order using <.

@sort(t:tab, cmp:fct)

sorts in-place the elements into ascending order.
The elements are compared using the function cmp. This function must accept two elements

of the tab as arguments, and returns a value converted to a bool. The value returned indicates
whether the element passed as first argument is considered to go before the second.

See also {!Library/Functions/tab_functions.list!}

@sputter(t:tab, p:float, n:numeric)

is an impure function returning a new tab of length n. This tab is filled as follows:

• The process starts with a current value initialized with the first element in t.

• Successively, for each element e in the result, a random number p′ between 0 and 1 is
compared with p:

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 405

– if p′ it is lower than p, then c becomes the value of e and the element next e is
processed.

– If p′ it is greater than p, then c takes the value of the next element in t, this new
value becomes the value of e and the element next e is processed.

Not that this function is impure as it returns a different result for each invocation. For
example:

@sputter([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 0.5, 16)

can return

--> [1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6, 7, 8, 8, 9]
--> [1, 2, 3, 3, 4, 5, 6, 7, 8, 8, 9, 9, 9, 9, 10]
--> [1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5]

See also {!Library/Functions/tab_functions.list!}

@sqrt(x:numeric)

computes the non-negative square root of x.
See also {!Library/Functions/math_functions.list!}

@string2fun(s:string)

returns the function whose name is given in argument. The initial @ in the function name
can be omitted. This is useful to convert directly a string received through OSC or through
messages into a function that can be applied.

See also [@string2obj], [@string2proc] and {!Library/Functions/system_functions.list!}

@string2obj(s:string)

returns the object definition whose name is given in argument. The initial obj:: in the
obj name can be omitted. This is useful to convert directly a string received through OSC or
through messages into an object that can be instantiated.

See also [@string2fun], [@string2proc] and {!Library/Functions/system_functions.list!}

@string2proc(s:string)

returns the proc whose name is given in argument. The initial :: in the proc identifier can
be omitted. Useful to convert directly a string received through OSC or through a message
into a process that can be instantiated.

For example, assuming that is set in the Max environment to a tab of two elements, the
first being a process identifier and the second an integer, then the code

406 CHAPTER 21. INDEX

whenever($channel)
{

:: (@string2proc($channel[0])) ($channel[1])
}

will react to the assignment to $channel by calling the corresponding processes with the
specified integer.

See also [@string2fun], [@string2obj] and {!Library/Functions/system_functions.list!}

@stutter(t:tab, n:numeric)

returns a new tab whose elements are repeated n times.

@stutter([1, 2, 3, 4, 5, 6], 2)
-> [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]

See also {!Library/Functions/tab_functions.list!}

@system(cmd:string)

This impure function hands the argument command to the command interpreter sh. The
calling process waits for the shell to finish executing the command, ignoring SIGINT and
SIGQUIT, and blocking SIGCHLD. A false boolean value is returned if an error occured (in
this case an error message is issued).

See also {!Library/Functions/system_functions.list!}

@tab_history(variable)

This is a special form. It returns a tab of the values of the variable in argument.
See also [@map_history], [@tab_history_date] and [@tab_history_rdate].

@tab_history_date(variable)

This is a special form. It returns a tab of the date in physical time of the updates of the
variable in argument.

See also [@map_history], [@tab_history] and [@tab_history_rdate].
(variable) : This is a special form. It returns a tab See. sect. [sec:mapvariable] page and

the functions.

@tab_history_rdate(variable)

This is a special form. It returns a tab of the date in relative time of the updates of the
variable in argument.

See also [@map_history], [@tab_history] and [@tab_history_date].
(variable) : This is a special form. It returns a tab See. sect. [sec:mapvariable] page and

the functions.

ALPHABETICAL LISTING OF ANTESCOFO PREDEFINED FUNCTIONS 407

@take(t:tab, n:numeric)
@take(t:tab, x:tab)

is a pure overloaded function. See also functions [@cdr], [@drop] and [@slice].

antescofo @take(t:tab, n:numeric)
builds a new tab with the n first elements of
tif n > 0 and the last -n elements of t if n
is negative.

@take(t:tab, x:tab)

gives the tab of elements whose indices are in tab x. This is equivalent to

[t[x[$i]] | $i in @size(x)]

See also {!Library/Functions/tab_functions.list!}

@tan(x:numeric)

computes the tangent of x (measured in radians).
See also {!Library/Functions/math_functions.list!}

@Tracing()
@Tracing(x:function, ...)
@Tracing(x:string, ...)
@Tracing(x:tab, ...)

Calling [@Tracing] starts to trace the calls to all functions specified by the arguments.
Functions to trace are given by their name (as a string) or by their value (through their
identifier) or by a tab containing such values.

With no argument, all user-defined function are traced.
See also [UnTracing] and {!Library/Functions/system_functions.list!}

@UnTracing()
@UnTracing(x:function, ...)
@UnTracing(x:string, ...)
@UnTracing(x:tab, ...)

Calling [@UnTracing] stops the trace the calls of the functions specified by the arguments.
If specified functions are not traced, there is no effect.

Without arguments, all traced functions stop to be traced.
See also [@Tracing] and {!Library/Functions/system_functions.list!}

408 CHAPTER 21. INDEX

@window_filter(nim, coef:tab, pos:numeric)

build a new nim by processing each component independently.
Each component is the result of a smoothing process of the breakpoints. Ecah breakpoint

of the new nim is computed by the dot product of coef with a sequence of y of the same
length as coef where position pos corresponds to the current breakpoint.

For example,

@window_filter(nim, [2], 0)

build a nim by scaling the image of nim by 2.

@window_filter(nim, [0.1, 0.2, 0.4, 0.2, 0.1], 2)

is a moving weighted average with symmetric weights around y.
See also [@filter_max_t], [@filter_median_t] and [@filter_min_t].

Chapter 22

The rest of the story is yet to be
written. . . by you

We want to complete the Antescofo documentation with your contributions.
Please, send your comments, typos, bugs reports, use cases, hints, tips and suggestions on

the Antescofo ForumUser web pages. It will help us to improve the documentation and the
Antescofo system.

Future work will include snippets of code, tutorials, and howtos. Do not hesitate to send
your examples. It will be included in the Antescofo documentation. Ideally, your contribution
must include a working patch with the needed audio files and a description of your example
in the forme of a README.md file written in markdown format. The goal is to have an
autonomous demo with all the explanations needed to run the demo by the Antescofo users.

409

http://forumnet.ircam.fr/discussion-group/antescofo/?lang=en%3E

410CHAPTER 22. THE REST OF THE STORY IS YET TO BE WRITTEN. . . BY YOU

Figure 22.1: The hierophant was petrifying

	Interactive Music Systems
	The Antescofo approach: coupling score following with a programming language
	Brief history of Antescofo
	Structure of an Antescofo Score
	An interweaving of musical events and electronic actions
	The file structure of an Antescofo augmented score

	Elements of an Antescofo Score
	Simple identifiers: Antescofo keywords and reference to the host environment

	@-identifiers: Functions, Macros, and Attributes
	$-identifiers : Variables and Parameters
	::-identifiers : Processes
	Events
	Event Specification
	Events as Containers
	TRILL
	MULTI
	Compound Events

	Event Attributes
	Event Label
	The @modulate Attribute

	Actions in Brief
	Delays
	Label
	Action Execution

	A Brief overview of Antescofo features
	A useful action : the curve
	Make your life easier with macros !
	Tour the loop
	Build your own world
	Why do you need data structures…
	In processes we trust
	A conditional world

	Become the time master

	Management of Time
	Logical Instant
	Time Coordinate
	Locating an Action in Time

	Antescofo Workflow
	Editing the Score
	Importing Scores to Antescofo (import of Midi files and of MusicXML files)
	Importing MIDI scores to Antescofo
	Importing MusicXML scores to Antescofo

	Using AscoGraph
	The App Menu
	Color Scheme
	Interaction Between Visual and Text Editors in AscoGraph
	Shortcuts
	Edit your curves

	Automatic Filewatch: Using Another Text Editor
	Styling your score
	Interacting with MAX/PureData
	Inlets
	Outlets
	Predefined Messages
	The setvar command
	Sending and Receiving OSC messages

	Preparing the Performance, Rehearsals
	Controlling Antescofo from AscoGraph
	Moving in the Augmented Score
	Tuning the Listening Machine
	Dealing with Errors

	Beyond score following…
	Antescofo as a sequencer
	Hierarchical scores
	Open scores and installations
	Beyond Max and Pure Data…
	A SuperCollider example
	A CSound example
	OSC

	Be adventurous !

	Introduction
	Other source of documentation

	Lexical Elements of an Antescofo Score
	Case-Sensitive and case-Unsensitive Identifiers
	Comments
	Indentation
	Reserved Keywords
	Simple Identifiers : Antescofo keywords and references to the host environment
	$-identifiers : Variables
	::-identifiers : Processes
	@-identifiers : Functions, Macros, and Attributes

	Structure of an Antescofo Program
	Definitions
	The First Sequence of Actions
	Reactions: Events Triggering a Sequence of Actions
	The Sequence of Reactions
	An Example

	Event Specification
	Musical Event Specification
	Pitch Specification
	Duration specification
	Events as Containers
	TRILL
	MULTI

	Event Attributes
	Event Label
	Fermata, Pizzicato, Hook and Jump

	Open Score and Dynamic jumps
	Open Score: specifying alternative follow-ups
	Dynamic Jumps

	Score statement

	Actions Specifications
	Action Sequence
	A Glimpse of Syntax
	Actions Sequence
	Atomic Action
	Compound Action

	Action Attributes
	Labels

	Delays
	Zero Delay
	Absolute and Relative Delay
	Evaluation of a Delay
	Synchronization Strategies

	When an Action is Performed

	Atomic Actions
	Message passing to Max/PD
	Message Receiver
	Message arguments
	Message terminator
	Expressions in messages' arguments
	Computing the receiver

	OSC Messages
	OSCSEND
	OSCRECEIVE
	OSCON and OSCOFF
	Conversion between OSC types and Antescofo types

	Writing in a File
	Assignments
	Assignment to Vector Elements and to Scoped Variables
	Activities Triggered by Assignments
	External Assignments
	Unassignable variables

	Aborting and Cancelling an Action
	Aborting an Action
	Abort and the hierarchical structure of compound actions
	Abort handler

	Internal Commands
	Controlling the Execution Flow
	List of internal commands

	Assertion

	Compound Actions
	General Syntax of a Compound Action
	Loop
	ForAll
	If
	Whenever
	Continuation operators

	Group
	Action Sequence
	The Nested Structure of Groups
	Instances of a Group
	Local variables
	Aborting a Group
	The until and the while Clause
	The during Clause
	The @abort clause
	The @exclusive Clause
	Synchronization Attributes
	Local Tempo

	Loop: Sequential Iterations
	Loop Period
	Stopping a Loop
	Instantaneous Iteration
	Avoiding Overlapping Iterations: [@exclusive]
	Synchronization Attributes of a Loop

	Parallel Iterations
	Curve (continuous action)
	Simplified Curve Syntax
	Full Curve Syntax
	Actions Fired by a Curve
	Grain, Duration and Breakpoints Specifications
	Curve Playing a NIM
	Interpolation Methods

	IF and SWITCH: Conditional and Alternative
	IF: Conditional Actions
	SWITCH: Alternative Actions

	Reacting to logical events
	Difference between conditional actions and whenever
	The @immediate attribute
	Synchronization Attributes
	Avoiding Overlapping Instances of a Body
	Stopping a Whenever
	Watching Restrictions
	One Activation per Instant
	Causal Score and Temporal Shortcuts

	Process Creation
	Object Creation
	Continuations
	NotionS of TIME in Antescofo
	The Manufacturing of Time
	Instants and Succession: Sequential Languages
	Instants, Succession and Simultaneity: Synchronous Languages
	Duration : Audio Processing Languages
	Supporting Event and Duration

	The Fabric of Time
	Music as a Collective Performance
	The Potential Score Time
	The Actual Musician Time
	Articulating Time
	Synchronizing with an Arbitrary Time
	A Side Note on Logical Time versus Actual Time

	Action Priority
	The Thickness of an instant
	Same Execution Date
	The Syntactic Ordering of Actions
	A Full Temporal Address with 3 Components
	Relevance
	Scheduling of Whenevers

	Synchronization Strategies
	Temporal Scope
	Loose Synchronization
	Tight Synchronization
	Target Synchronization
	Comparison between [@loose], [@tight] and dynamic [@target]
	How to Compute the Position in the Event of Conflicting Information
	Specifying Alternative Coordination Reference
	Latency Compensation

	Missed Event Errors Strategies

	Expressions
	Expressions versus Actions
	Three Kinds of Expressions
	Auto-Delimited Expressions
	Simple Expressions
	Extended Expressions

	Values
	Dynamic Typing
	Checking the Type of a Value
	Value Comparison

	Variables
	Histories: Accessing the Past Values of a Variable
	Variable Declaration
	History reflected in a Map or in a Tab
	Accessing a Local Variable From Outside its Scope of Definition
	Antescofo System Variables
	Special Variables
	Variables and Notifications

	Temporal Variables
	The @sync synchronization attribute
	Comparing score following and temporal variables

	Operators and Predefined Functions
	Conditional Expression
	 @empty and @size

	Alphabetical Listing of Antescofo Predefined Functions
	Actions as Expressions
	Simplified Syntax
	Example

	Scalar Values
	The Undefined Value
	Boolean Values
	Integer Values
	Float Values
	User-defined Functions
	Proc Values
	Exec Value

	Data Structures
	String Value
	Map Value
	Tables
	New Interpolated Map

	Functions
	Function definition
	Extended expressions
	First Examples
	Function's Local Variables and Assignations
	The return Statement
	Extended Conditional Expressions and Iteration Expressions
	Atomic Actions in Expressions

	Function Call Evaluation Strategy
	Functions as Values
	Curried Functions
	Tracing Function Calls
	Infix notation for function calls
	Process
	Calling a Process
	Calling a Process as an Action
	Calling a Process as an Expression

	Recursive Process
	Process as Values
	Aborting a Process
	Processes and (local) Variables
	Process parameters are local variables
	Local variables
	Dynamically Scoped Variable
	Assignment using the dot notation

	Process, Tempo and Synchronization
	Actors

	Macros
	Macro Definition and Usage
	Expansion Sequence
	Generating New Names
	What to choose between macro, functions and processes

	Actors (objects)
	Introduction: Process as Object
	Actors
	A Basic Example
	Field Definition: @local
	Performing an Action at the Object Construction: @init
	Specifying an Object Method: @method_def and @proc_def
	Referring to the object: $THISOBJ
	Specifying a Broadcast: @broadcast
	Specifying a Reaction: @whenever and @react
	Specifying an Abort Handler: @abort
	Checking the Type of an Object: @is_obj and @is_obj_xxx
	Object Instantiation
	Concurrency Between Method Applications
	Object Expansion into Processes and Functions

	Patterns
	 Note: Patterns on Score
	Pattern Variables

	 Event on Arbitrary Variables
	The at Clause.
	The where Clause
	The before Clause
	Watching Multiple Variables Simultaneously
	A Complex Example

	 State Patterns
	A Motivating Example
	The initiation of a state Pattern
	The during Clause
	Limiting the Number of Matches of a Pattern

	Pattern Compilation

	Additional Elements
	Tracks
	File Structure of an Antescofo Score
	Writing an augmented score through multiple files
	Load and Preload Command

	Evaluation at Score Loading Time
	Constant Expressions
	 @eval_when_load Clause

	Auto-Delimited Expressions
	Simple Expressions
	Constant Values
	Data Structure Definition
	Tab Access
	Variables and Variables Management
	Infix Unary Expressions
	Infix Binary Expressions
	Conditional
	Infix Predicates
	Function Application and Process Call
	Action As Expression

	Macro vs. Function vs. Process
	Argument evaluation strategies
	Antescofo Evaluation Strategy

	Grammar of object definitions
	Antescofo Workflow

	Acknowledgements and credits
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Miscellaneous
	Listable Functions and Listable Predicates
	Overloaded functions
	Side-Effect
	Special forms
	Function call in infix form

	Listing by categories
	{!Library/Functions/math_functions.list!}
	{!Library/Functions/random_functions.list!}
	{!Library/Functions/tab_functions.list!}
	{!Library/Functions/listable_functions.list!}
	{!Library/Functions/nim_functions.list!}
	{!Library/Functions/map_functions.list!}
	{!Library/Functions/string_functions.list!}
	{!Library/Functions/predicates_functions.list!}
	{!Library/Functions/score_functions.list!}
	{!Library/Functions/system_functions.list!}

	Alphabetical Listing of Antescofo Predefined Functions

	The rest of the story is yet to be written… by you

