oEcumen ation

. Research reports
. Musical works
. Software

PatchWork

RepMus Library

First Edition, April 1996

IRCAM == Centre Georges Pompidou

© 1996, Ircam. All rights reserved.

This manual may not be copied, in whole or in part,

without written consent of lrcam.

This manual was written by Gérard Assayag and Claudy Malherbe, and
was produced under the editorial responsibility of Marc Battier, Mar-
keting Office, Ircam.

PatchWork was conceived and programmed by

Mikael Laurson, Camilo Rueda, and Jacques Duthen.

The RepMus library was conceived by Gérard Assayage and Claudy
Malherbe and programmed by Gérard Assayag, with additional musical
expertise by Joshua Fineberg (AS->PW), Francgois Nicolas (Feuilleté)
and André Riotte (LC).

First edition of the documentation, April 1996.
This documentation corresponds to version |.0 of the library, and to
version 2.5.1 or higher of PatchWork.

Apple Macintosh is a trademark of Apple Computer, Inc.
PatchWork is a trademark of Ircam.

Ircam

1, place Igor-Stravinsky
F-75004 Paris

Tel. (33) (1) 44 78 49 62
Fax (33) (1) 4277 29 47

E-mail ircam-doc@ircam.fr

IRCAM Users’ group

The use of this software and its documentation is restricted to mem-
bers of the Ircam software users’ group. For any supplementary infor-
mation, contact:

Département de la Valorisation
Ircam
Place Stravinsky, F-75004 Paris

Tel. (1) 44 78 49 62
Fax (1) 42 77 29 47
E-mail: bousac@ircam.fr

Send comments or suggestions to the editor:
E-mail: bam@ircam.fr

Mail: Marc Battier,

Ircam, Département de la Valorisation

Place Stravinsky, F-75004 Paris

To see the table of contents of this

manual, click on the Bookmark Button
located in the Viewing section of the
Adobe Acrobat Reader toolbar.

‘Contents

The Chords etc. Menucccviiiiiiiinnn 6
Make-graph ... 6
graph-tour ... 7
MK-Pred. ., 8
MAapP-Chords.......cooevviiiiiiii 13
AULOTraNSP coev e 18
MUEATION .o 20
COPY-ChOIAS ..oeeiiiieeeee e 24
ChSEQ->POIY..coieiiiiee e 25

The Metrics Modulation Menu 27
feUIllete oo 27
tempo-intp ... 31

The Cribles Menucccvviiiiiiiiiiinnn, 34
L ettt 34
eval-Crible ..o 35
crible-list ., 36
Ccrible-rtm . 37

Thelclanguageccccccoovviiiieiieiiineeeeenn 39

The AudioSculpt to PatchWork Menu 41
AS SPW ciiiiiiiiiiiiiiiii e 41

The RepMus Menuscccvviiiiiiiiinnnnnns 44

The Chords etc. Menuccccevveeiiiiiiienennn. 44
The Metrics Modulation Menu 44
The AudioSculpt to PatchWork Menu 44
The Cribles Menuccoeveviiiiiiiieieeeeee, 44

The Chords etc. Menu

make-graph

Syntax

Irepmusl::make-graph coll &optional pred
[function]

parameters

coll a list of list of midics (or any number) or a list of chord-objects or a chord-line object
pred (optional) must be the output of a mk-pred box.

output
a graph object. Generally the ouput of make-graph is connected to the graph input of a graph-tour box.
Description

Builds a relation graph between chords in a chord set.

The default relation is the amount of common notes between chords. The pred input can be used to change the relation.
make-graph may also be used to relate any kind of data that you can code into lists of numbers.

6 - PatchWork - RepMus

graph-tour

(graph|[solu |
graph—tour E

Syntax

Irepmusl::graph-tour graph solu &optional link order trav stat

[function]

parameters

graph the output of a make-graph box

solu positive integer. Choose a solution between 0 and n-1 (n is the number of chords)

link (optional, menu) if 'yes' adds a low common note when there is no common notes between 2 chords.

order (optional, menu) if '>=' maximize (default). If '<=' minimize (i.e. get path of maximum contrast).

trav (optional, menu) if 'short' (default) short path without repetitions. If 'long' long path with repeti-
tions.

stat (optional, menu) if 'norm' (default) outputs the solu(nth) solution. If 'stat', prints all the solutions
with an optimality factor.

output

Depends on the kind objects that have been put into the graph (see make-graph) :

If the graph was built with a list of lists of integers, output is a list of lists of integers.

If the graph was built with a list of chord-objects or a chord-line object, output is list of chord objects.
The output is generally connected to the chords input of a chordseq box.

Description

Builds a (quasi-) optimal path between chords that have been organized into a graph with the box make-graph. If the
relation used in make-graph is the amount of common notes, graph-tour delivers a sequence of chords where the
amount of common notes between successive chords has been maximized (or minimized). There are as many different-
solutions as there are nodes (i.e. chords) in the graph.

7 - PatchWork - RepMus

mk-pred

]|u-:|I ||tDI |[
mk—pread E

]|u::|| ||‘|'.D| |[
s oo |
ﬂng ”ng h
mk—prad E

Syntax

Irepmusl::mk-pred val tol &restv

[function]

parameters

val integer, value to be compared with the difference between notes of chords.
tol integer, allowed deviation in the former comparison.

arg (optional, integer) additional value to be used like <val>

output

a predicate function object to be connected to the pred input of a make-graph box.

Description

This box is used in conjunction with the make-graph box. It defines a predicate used to compare elements in the ob-
jects (e.g. chords) put into the graph. Each element x (e.g. note) of each object (e.g. chord) is compared to each element
y of every other object. Then (y-x) is compared for equality to the parameter val, with the tolerance tol. Thus, for val
= 0 and <tol> = 0, strict equality (e.g. common notes relation) is seek.

For val = 100, hal-tone upward step relation is seek. If to/ = 25, then a quarter tone tolerance is allowed. If you build
a graph using make-graph with these values, then find an optimal path using graph-tour, what you get is a chord
sequence where there is a maximum number of half-tone steps between 2 consecutive chords, with a quarter tone tol-
erance.

If you add optional arguments (as many as you like), these values will be used to complexify the relation.

For instance, with <val> = 300, <opt-arg1> = 400, <opt-arg2> = 700,the optimisation will be : 'find a sequence where
consecutive chords have the max amount of minor 3rd, major 3rd and perfect 5th upward steps.'

8 - PatchWork - RepMus

=[] ChordsEtc EEEI
A set of random chords. Iz 0
| ok the Box !
————— s [o0 g
o T | I o N | O
hor-d
E- For 1/2tone step Shordsef o EA
E::::][::::] PE!GtiDH?hip,?DﬁHEEt his an 'interpolated’
"Ehftﬁﬁ$g1 ER ;ﬁliuiz— Egeﬁ fnput equence with the
arap alues (0,03, then
c0,0,100 then <100,03
leell f£2 o p[100 |E I for ‘mk-pred’
make—graph E mk.—prad E
[ﬂgrqph|E 1
EE
i
graph—tour E chseg—+paly
ﬂchnrdiﬁﬂ 1 -|chnrdjED |[
I | o |
o N | N o | N
chordseqs, EA chordseqs, EA
val here to get a The same here, but
hord sequence transformed into a
ith a max of o lyphonyg wi th
ommoh hiotes. -h=eq—»poly
[

FIGURE 1

The tutorial window for boxes make-graph, graph-tour and mk-pred

9 - PatchWork - RepMus

S == chordseql =—F—————-——=

ﬂ ! 1
% = |
I f it I ﬂl I g ' I
) affs) channel stent
[Jins @ dur Cagn 528 [T]kr M

FIGURE 2 The box chordseq1 opened

10 - PatchWork - RepMus

sl == —————"=— chordseq2

[~

n

rEN

+
-

%@i:ﬁ
ol
s |

31

(D affs () channel stont

[Jins @ dur O dyn 957 [T 00]kr m

FIGURE 3 The resulting box chordseq2 opened

11 - PatchWork - RepMus

gDV chordseql! ==Fr———————

il] .
% él i 'i.t‘ : : i | : - :
, ===

{offs {:}chuhhel stoht

I:l in= @dur* l:::ldgn

|T| ZOom

FIGURE 4 The result as transformed by chseq->poly box.

12 - PatchWork - RepMus

map-chords

]|Eh51 ||n:h52 |[
ET_ =

e e s
1| approd[penal |

map-chords

Syntax

Irepmusl::map-chords chs1 chs2 cf ca cr cn approx penal

[function]

parameters

chs1 a list of chord-objects or a chord-line. This is the model.
chs2 a list of chord-objects or a chord-line. This is the reservoir.
cf integer, coefficient for common notes criteria

ca integer, coefficient for ambitus criteria

cr integer, coefficient for register criteria

cn integer, coefficient for number of notes criteria

approx an integer between 1 and 16. Microtone approximation used in comparisons. 2 = 1/2tone.
penal an integer >=0, penalty value for chord repetition

output

a list of chord-objects.
Description

map-chords takes a sequence of chords as a model, and another set of chords as a reservoir. Then it picks chords in
the reservoir and it builds up a new sequence from them, trying to make that sequence look as much as possible like
the model.

map-chords uses a euclidian distance measure between chords in the reservoir and chords in the model. Dimensions
used are : the number of common notes, the ambitus (dist from the bottom to the to of the chord), the register (the
gravity center of the chord), the difference in the number of notes. The user has the ability to give a weighting coef-
ficient for any of these criteria thus influing on the resolution. If O the criterium is totally ignored. Typical values are
between 0 and 10.

There is also a penalty parameter for chord repetition: if this value is high, a chord cannot be repeated in the sequence
except if its first occurence is very far behind. Values typically between 0 (no penalty) and 10.

13 - PatchWork - RepMus

map-chords

|

=[]
The model .
Lock it!!!

The reseruvoir.
Lok it

o ST |

F5__ [T
J S| N

n:hc-r*dqggi‘,:, ER chordseq , EA
E-:|n:|'|51 ”:h52 hé

J KR N
EII:I

atra gll the
riteria hawve the
ame weight <132

map—chaprds

=

S|
Y

chordseql, EA

A new sequence that
"looks |ike"
bt with chords taken
from the reseruair.

the model,

FIGURE 5 The tutorial for map-chords module

14 - PatchWork - RepMus

I
[]

chordseq?2

Eza
B33

i
a

e
Fry
L
=
L
L

i 5; ﬁ' ﬂ‘ gﬁl “é #é 2s E ;'.t

Dn:nffs D:hqnnel stent

(Jirs @ dur Odyn 1011 [T 100]kr m

FIGURE 6 The model opened

15 - PatchWork - RepMus

chordseq

%i ! 1 1 1
gl | 0 "j+l. i i i
l:lc-ffs l:::ln:h-:mhel stont
(ins @ dur Qg 1442 [1] 100k M
= ML A=
|T| rdalal |
FIGURE 7 The reservoir opened

16 - PatchWork - RepMus

chordseql

=stent

{:} off= {:} channe |

tr] M

=] [l RRRRRAARA AR ARRRAAR AR AR R AR AR AR AR R AR RRRR AR R RRR AR ARRRRRRARRRRARARRARRRRRR [=

[1][100]

() dun

ins @dur‘

[

Z00m

The result opened.

FIGURE 8

17 - PatchWork - RepMus

autotransp

]|n:hu:-r‘dﬂ]|n:hnr*u:|:1|l:n:|r'u:| |[
autot E| [[mode |{fund |g
autotranspl E

Syntax

Irepmusl::autotransp chords &optional band mode fund

[function]

parameters

chords a list of midics, or a chord-object, or a list of these, or a chord-line

band (optional) a list of 2 midics, to limit the pitches down and upwards

mode (optional, menu) if 'chrom' normal transposition, if 'spec' spectral transposition
fund (optional, midic) gives a fundamental if in 'spec' mode.

output

a list of lists of midics
Description

Takes a chord or a series of chords and builds the auto-transposition of these chords. The auto-transposition of a chord
is a set of chords resulting from transpositions of that chord, such that any note of the resulting chord is made equal to
any note of the original chord. There is also a 'spectral' mode where all the notes in the transpositions are approximed
to a harmonic partial of a fundamental that is specified.

If you specify a series of chords, autotransp will build the transposition set for every chords and put all the results
in sequence.

18 - PatchWork - RepMus

autotransp

L=
il

EP?EF M

EP?EF M

ﬂchnrdiiﬂ I

autotransp E

bu{%ﬁr
[”qutn |E “
BT]

play 3

Thi=s is an 'improvisator' that uses
the ==t of autoctranspositions built
from @ chord. Try connecting chords
from your invention. Try putting the
‘'mode’ param to '‘spec. Try changing
the 'dur’ and ‘poly’ param in the
'play’ box. Better performance if gou
lock the buffer after evaluating it
phice. To stop, abort ik the menu
FHoper

=]

FIGURE 9

The tutorial window for autotransp.

19 - PatchWork - RepMus

mutation

]|n:hu:ur*|:|~.1| ir‘u:uut|
mututilg_p

Syntax
Irepmusl::mutation chords inout
[function]

parameters

chords a list of list of midics, or a list of chord-object or a chord-line object.
inout controls the order in which notes are added and removed.

output
a series of chord in the form of a list of lists of midics.

Description

Computes a transition sequence between two or more chords.

mutation works differently from an interpolator it generates a series of small moves - take off a note here, add a note
there, move a note here etc. - that changes the first chord into the second. It does not introduce any note other than the
ones that are present in the chords. If given more than two chords it generates a sequence with the transitional chords
stuffed between the original chords.

20 - PatchWork - RepMus

[[==—"—"———— mutation

L ock that box 1H1I11LI

Ll
Wl

oo oo
5[
o o

hord
n:uh-:ultld21 ..E ordseqz, EA

it — E mutut¢m
—1|~:hn:-r*dj||3ut | E
mutat i';-_p IEE-

|:] chnr‘dﬂED |[n:hn:-r*dqg_g 1, ER
ES_ |00

valuate here to get a
JDD[‘zsmoother' sequence from
chordseq , EA n other seguence.

euvaluate here to get a

transition sequence
between chords. Try
changing the parameter
Yinout' in mutation

=]

FIGURE 10

The tutorial window for mutation

21 - PatchWork - RepMus

=[] chordseq
£
; i ¥
{1 affs) channel stont
[ins @ dur O dun [T]kA m
=] WE#: R RRRRARR RRARAARRRRRS RRFE
|T| Zoom
FIGURE 11 The mutation of two chords.
=[] chordseqg?2
7| | }
. }l.ll i+l. 1k i]
— '
IS S
_3.1
i offs) channel stont
|:|ir‘|5 @dur* {:'-:Igr‘l =4 :l |

FIGURE 12 Inputting a chord sequence to mutation.

22 - PatchWork - RepMus

I
[

chordseql ==icFF——11|F

B3
=
Exa
[~

b
‘-;; Eaa

FER
+H
i
FEy
+F
i

e
44
H
i
Fr
]
r
¥
r

'::::'foE {:}chqnhel
|:| ins @dur‘ {:]dgn 2713

FIGURE 13 The result of mutation on a chord sequence

23 - PatchWork - RepMus

copy-chords

[orores |

copy-ghords

Syntax

Irepmusl::copy-chords chords
[function]

parameters

chords a chord (in midics or object form) or a list of same, or a chord-line object.
output

same type as input.

Description

Deep copies a chord or chord list or chord sequence. Very useful to overcome some of PatchWork board-effects on
chords (i.e. editing a chord inside some editor causes a change in an other editor...)

24 - PatchWork - RepMus

chseg->poly

]|Eh5E|:|”dE| |[

[oper

chseq—-tpoly
Syntax
Irepmusl::chseq->poly chseq del approx
[function]
parameters
chseq a list of list of midics, or a list of chord-objects or a chord-line object.
del positive integer, defines the time interval between two chords.
approx integer (1, 2, 4, 8) tells the approximation used for finding common notes.
output

A list of chord objects suitable for input to a chordseq module.
Description

Changes a sequence of chords in a polyphony where common notes between two chords are changed into a single sustained
note (harmonic link).

25 - PatchWork - RepMus

utils

| ok, This 1

o S I

i]n:hcur*n:lg

copy-chords |

i]|chDPd5 |

| OCE !

=1

it
11

=1

T

......................

n
-y
n
m
0
E‘

chsagq—rpoly

n
x
[u]
=
L

=1

copy-chords
ﬂchnrdﬂ“ﬂﬂ |[
fSave gour Hork 11 Copy
][our chords 11
]E |1 |[
chnrdqgg o ER

=
=1

|j|i
==
|j|D|E

&
x
[m]
=
ﬁ-
m
I

o

val here to change a
equence of chords into a
olyphony where harmonic
links become =sustained
otes.

=]

FIGURE 14

The tutorial window for copy-chords and chseq->poly.

26 - PatchWork - RepMus

The Metrics Modulation Menu

feuillete
p(imp |[timp |
n(puls |[tpuls|g
pmes |[tmes |f
p(vit |[npuls|g
feuil late
Syntax
screamer::feuillete imp timp puls tpuls mes tmes vit npuls
[function]
parameters
imp integer or ratio, impulsion (1/16 = sixteenth note, 1/12 a triplet unit etc.)
timp integer, impulsion tempo (120 means 120 impulses in a mn)
puls integer or ratio, pulsation (1/4 = quarter note, 1/8 = eighth note etc.)
tpuls integer, pulsation tempo (60 means 60 pulsation in a mn)
mes integer or ratio, measure signature (3/4 means 3 quarter notes)
tmes integer, measure tempo (20 means 20 measures in a mn)
vit integer or ratio, number of subdivision of the pulsation (3 : triplet, 2/3: triplets with notes linked 2
by 2)
npuls integer, number of pulsation in a measure, an alternative to mes parameter
output

a c-measure-line object to be connected to a rtm box. All the solutions to the constraint system are put one after the
other.

Description
Builds a series of measures that obey to some constraints on metrics structure.

The metrics structure is defined with 3 levels : the measure (a group of pulsations), the pulsation (the unit denotated
by the measure signature's denominator), the impulsion (the subdivision of the pulsation, i.e. triplets inside quarter
notes in a 4/4 measure).

All the parameters can take a value of -1 which means : UNDEFINED. Generally you specify only some parameters, put
-1 in the others. This defines a constraint system that is solved for you by feuillete.

All the parameter can take a list instead of a single value. A list (v1 v2 ... vn) means that the considered parameter can
take any value among v1,v2,...,vn.

All the parameters can take a list of the form (b v1 v2). This means the considered parameter can take all the values
BETWEEN v1 and v2.

You can specify strange values like 5/16 for the pulsation. This means that there is a first level of WRITTEN pulsation
which is the quarter note (1/4), subdivided into 4 smaller unit (sixteenth notes). The smaller units are linked 5 by
5 (5/16) which lets you hear another pulsation. This is combinable with any impulsion speed (i.e. you can put triplets
in that perceived pulsation).

27 - PatchWork - RepMus

This kind of manipulation can be very complex but you still have a precise control over what you are building. It is
very easy to generate for instance metrics modulation a la Carter. This module is inspired by Francois Nicolas paper :
"Le feuillete du tempo" thus the name. This module uses the Constraint Solver 'screamer' by J.F. Siskind and D.A. McAlI-
lester from Univ. of Pennsylvania and MIT.

S==————— tfelillete 08— —————|
iff1 = = & 59
com=t —— pfE 35 7 3/2 4/3 572 573 974 |
—— L1 dijch 1 S const
| n
Eﬂﬂﬂ O)]t1 I:‘I |[

1 120 5/16
[TR] 7 JFT
1 i/ JFT s SRR]|'1__”'1_|[

feuill;¢e

]|li4 g4 ”((4 |[
Y
o= |

ok j= rtml _ . EA
— o EA tm __ , ER
ere, there is a fractional
Here, there is an era, the impulsioh ulsation 5/16. The las 2
impul=sion at q freguency tempo i= 180, 2 beatls lines in the result show gou
of 120 Cper mhl2, 15 2 medasure max, and a hat it looks |like when the
edsures in a mh, the list of valuss i= given eat itsel iz not
Eumber of beats per for- the number of beat ubdivided. The first two
eqsure is limited to 5, wbdivision. Mote that lines show a solution where
and the number of fractional waluss are the perceived beat is itself
impul=sions inside a beat | lowed. ivided into three (triplets
iz limited to 3 inh a SA16 pulsation ... 2
[
FIGURE 15 The tutorial window for feuillete.

28 - PatchWork - RepMus

=———————rtm
S i J=es0 g J=e0n
1

FT71 577357753 JJSJJJSJJJSJJJSJ“

[l f tff ee] [100] [Play] [SPlay | [_Stop | [Jedit []ehord
measure staff stent scale speed] dyt ||-:|_ur'~ |_|n:|ff§
FIGURE 16 The first result (from left to right)
== tn=Fe0e——w — 1|
z = =
B i J 72.0 . Jﬁ 120.0
. K
1
I I I R R I I

[T T #1 57 98] [“Piay] [sPiay | [(step | [Jedit [Jchord
measure staff stont =cale speed [] duyt |_|-:|_ur'~ |_|n:-ffs '1—'_'-|,
FIGURE 17 The second result (from left to right)

29 - PatchWork - RepMus

rtmi

‘51 J =EI:|1':-.-|:I 12 12 12 12
D A I I P) i‘
1&' J =600

e —)

J | — ' Y R N “

T[T #JC 6] [00] Flay | (sFioy | [Stop] [edit [Jchord
LIrE =taff stcht scale spesd _n:|_|_|_r'| |_|-:|_ur'~ |_|n:-ff§ |_| ins
FIGURE 18 The third result (from left to right)

30 - PatchWork - RepMus

tempo-intp

j|begin|lend |

]|n5tepﬂ|tnl:ﬁ |[
]|n:|-:hrn ||r'~-:|+.i-:h|
tempo—intp E

Syntax

screamer::tempo-intp begin end nsteps tol% dom ratio &optional sol

[function]

parameters

begin number, initial tempo

end number, final tempo

nsteps integer, number of interpolation steps

tol% integer, allowed deviation when reaching the final tempo.

dom integer, all ratios whose num and denum are smaller or equal to dom may be used.

ratio menu, 'any' means any ratio will do, '=' means all ratios must be equal, '->' means ratios are
increasing, '<-' means ratios are decreasing.

sol (optional, menu) 'seq' means all solutions are concatenated, 'list' means' all solutions are put into a
list.

output

Ac-measure-line to be connectedto artm box. If the sol parameter is 'list', a list of c-measure-line to be con-
nectedto apoly-rtm box. This option is also convenient to choose a solution among many, with the posn-match box.

Description

Builds a series of measures where the tempo changes smoothly from a starting value to an end value. At each step, a
metrics modulation is performed. Typical subdivisions of the beat (impulsions) are computed to optimize the modu-
lation. A set of ratios is used to pass from a measure to an other. You have control over these ratios : they can be always
the same, or increasing, or decreasing, or in any order.

You can specify a domain for the ratio. dom=3 means, 1, 2, 3, 1/2, 1/3, 2/3, 3/2 are allowed. The more ratios al-
lowed, the more solutions.

tempo-intp yields all the possible solutions in the constraint system specified by the parameter values. The solutions
are concatenated in a measure-line or gathered into a list, depending on the parameter sol.

This module uses the Constraint Solver 'Screamer' by J.F. Siskind and D.A. McAllester from Univ. of Pennsylvania and
MIT.

31 - PatchWork - RepMus

JER | I | |
E |y] E IF |
tempo-ihtp E tempo=intp E
| pEEooT]ET s B e e
rtm 5 EA rtm __ , EA
tempo interpol in 2 tempo interpol in 35
teps with ratios teps with ratios
in any order lways equal <4/30,
here is only one
olution.
[
FIGURE 19 The tutorial window for tempo-intp
S[E=—=—m——————————————— rtm
3 = 4 =
g i J =450 g J=s00
1

FT7 17735773 JJSJJJSJJJSJJJSJ“

Lt 1 v e [o] [Play | [(SPlay | [Step | [Jedit [Jehord

_medsure staff =stent scale spead dyn r_lggr r_luff§

FIGURE 20 The first result (on the left)

32 - PatchWork - RepMus

=[] rtm ElE|
3) =c0.0 ﬁ Jann

B :
SR I I s R I s s I I B

4

3
d

i J=s00

é =10¢.

JJJJJJJJJJJJ‘

67 3

TR0 1T

3

4
4 4

J =143 22

.-‘_"\-\..-‘_"\..-‘_"\-\..-'_"H.

Jiddddidiil)

TN

JJJJJJJJ ﬁﬁﬁﬁﬁﬁ‘

"-1 aJ =189 €3
3

mmmm “

N | | D |

[100] [Play | [sPlay | [Stop |

[Jedit []chord

measure staff stocnt scale spead

=|:|£_r'| r||:|_ur'~ |_||:-ffs ||_1'_‘-|I

FIGURE 21 The second result (right)

33 - PatchWork -

RepMus

The Cribles Menu

Ic

ﬂprng—lc |

o

— Im

Syntax
Irepmusl::lc prog-lc
[function]
binary operators
+ union
- intersection
* sieve composition
/ set difference
/1 set symetrical difference
unary operators
c (x) complementary sieve of the sieve 'x'
d(i1i2 .. in) defines an arbitrary sieve (i1 i2 ... in) with i1,i2... increasing integers
a(sbe) defines a random sieve with step close to 'a', between values 'b' and 'e'

e <lisp form> evaluates <lisp form>

examples : ¢ = e (append (c1) (reverse (c1)) computes a palindrome from the sieve c1 and puts it into c. If you use
sieve-symbols in <lisp form> put them between parentheses (e.g. (c1)).

p(s c1 c2 ... cn) where 's'is a symbol, 'c1'...'cn' are previously defined sieves. Computes a set partition of the set c1 U
c2 U ... cn. Then the subsets are put in symbols built from 's'.

Example : after evaluating p(x c1 c2 ¢3), the symbol x1 (resp. x2, x3) is set to contain the element of c1 (resp. c2
¢3) that are not elements of the 2 other sets. The symbol x12 contains elements common to ¢1 and c2 but not members
of ¢3. x13 and x23 follow the same model. x123 is the intersection of the three sets.

parameters

prog-lc the output of a text-win box

output
nil
Description

Computes a set of sieves (cribles) from a set of sieve expressions contained in a text-win box connected to it.

A sieve is a list of increasing positive integers. See the tutorial for examples of the language (I¢) used for writing sieve
expressions. Once evaluated, all the symbols that appear on the left side of the '=' operator (e.g. c1 in the expression
'c1 =c2 + c8') inside the text-win are defined and can be used in the eval-crible, crible-list and crible-rtm mod-
ules, in the crible parameter.

simple sieve : (step offset begin end)

example : ¢ = (2 0 0 8) defines a sieve with a period 2 between 0 and 8: (0 2 4 6 8)

c=(21410) defines (57 9).

34 - PatchWork - RepMus

eval-crible

bt]
eu-:ll—lq*iblq_

Syntax

Irepmusl::eval-crible crible

[function]

parameters

crible a symbol or a list of symbols

output

a sieve (a list of increasing integers) or a list of sieve
Description

Evaluates a symbol or a list of symbols defined with the I¢ box.

35 - PatchWork - RepMus

crible-list

]|I ist ||n:r‘~i|:-|n1[

-:r*ible;;llist

Syntax

Irepmusl::crible-list list crible
[function]

parameters

crible a symbol or a list of symbols defined with a Ie¢ box
list a list

output
a list.

Description

Apply a sieve defined with the I¢ box to any list.

36 - PatchWork - RepMus

crible-rtm

]|metr*ic||n:r*iblq[

ot

cribleazptm
Syntax
Irepmusl::crible-rtm metrique crible option
[function]
parameters
metrique ac-measure-line (output from a rtm box)
crible a symbol or a list of symbols defined with a I¢ box
option menu, 'silence' means impulsions ignored by the sieve are made silent, 'liaison' means a selected
impulsion is linked to following until next selected impulsion
output

ac-measure-line or a list of c-measure line, depending on the crible parameter. Connect to a rtm or poly-
rtm depending on the type of output.

Description

Apply a sieve defined with the I¢ box to a metric/rhythmic structure.

37 - PatchWork - RepMus

=[]

Ic

|

B N=T 473

folder

Open here the file
in the
'repmus—tutorials’

ISee the contents of some siewves

]FEE c3 S ug ii dd ee cuu as rs |

ﬂcPibIe |

1-:12:-E |[

Hemw A

—

=

| [prog-

II:I_I I

Then evaluate
-

ﬂ(4 4?|F(4 |[

const

— 1

= o

euul—;qible d

ez the contents of the partition
etz of sieves c2,c3,ch

const

]Fx1 ®#2 w3 %12 ®13 =23 =1232 | ﬂcrible
[euql—pqible d

= o

n[(E000 |B0 |4

]Fuu #12 o5 cuul |

rtm % EA

const — d

.......................

ﬂmetriﬂcriblﬁ

fiiai=]

]FEE c3 oS uu cuu }|
| const — d

criblg:rtm

|+~ tmoo

prinEA

ock the rim box. Then
valuate the prim. Try

onnect the second const to
the crible-rtm box. Try to
hange the option param from

‘silence’ to 'ligison’

to

FIGURE 22

The tutorial box for I ¢, crible-rtm, eval-crible

38 - PatchWork

- RepMus

The Ic language

;;; the Ic language

;;; define and manipulate sieves

;;; then use them on pitches or rythm

;;; always begin a line with the symbol '%'

;;; define simple sieves with period 2, 3, 5 between 0 and 100
% c2 =(200 30)

% c3 = (300 30)

% c5 = (500 30)

;;; define simple sieve with period 7, offset 2, between 2 and 16
% c7 =(72216)

;;; define the union of ¢2, ¢3, c5

% uu =c2+c3 +ch

;;; define the intersection of ¢7 and uu

% ii = ¢c7 - uu

;;; take from ¢3 elements in the composition of ¢2 by ¢3

% dd =¢3/ (c2 * c3)

;;; @ set containing elements of c2 not in ¢3 and elements of ¢3 not in c2
% ee =c2 // c3

;;; the complementary sieve of uu

% cuu=c (uu)

;;; an arbitrary sieve

% as=d(027 12 13 25 26 91)

;;; @a random sieve with period 'close' to 4 between 10 and 100
% rs = a(4 10 100)

;;; evaluate a lisp form : take off the last element of uu

;; note that uu MUST be inside parentheses

% Lf = e (reverse (rest (reverse (uu))))

;;; compute a partition of a set

;;; defines the sets x1,x2,x3,x12,x13,x23,x123 which are all the non-intersecting subsets
;;; that can be made out of 3 sets.

% pp = p (x c2 c3 cb)

The text file used in the Ic example

39 - PatchWork - RepMus

[———— prinl Eee8—"————[|

g 4 4=

SRR N TRy SR TENEN T SEERSEEER DTN

g i /-

EINRNEnnE NI

g i /-

BRI I PN TR T ST e Ty

g 4 /-

AR AR PRI PR AR I
s s e e) Ce) G] Heo Dl e O
FIGURE 23 The resultof riblertm on a strear of sixteerth notes

40 - PatchWork - RepMus

The AudioSculpt to PatchWork Menu

as->pw
1| analygfvmin [g
n|vmaz [[del talg
p(mmir |[mmax |g
| approdnpo |y (g
as—rpl
Syntax
I[repmusl::as->pw analyse vmin vmax delta mmin mmax approx npoly
[function]
parameters
analyse connect here the output of a text-win module where you have read the analysis text file.
vmin, vmax integers, amplitudes will be scaled between vmin and vmax velocities
delta integer, events whose onset-time fall within a window of delta 1/100sec will be gathered into chords
mmin, mmax midic values that define the allowed pitch range for the output.
approx 1,2,4, or 8. Micro-tonal approximation.
npoly tries and reduce the polyphony to npoly notes at the same time by taking the louder partials first.
output

a list of chords to be connected to a chordseq module.
Description

Converts partials-analysis data, obtained within AudioSculpt by the 'Export Partials' command, in a suitable format
for displaying and manipulating in PatchWork.

41 - PatchWork - RepMus

AS->PLI

his i=s a retranscription of o =sound
ample analyzed in AudicSculpt. You
an hear to the sound by plaging the
oundfile 'africa.qiff' in the

'repmus—tutorial '

thanks=s to Marc Chemillier for

roviding its

folder. CHMany

1-:12:-|E |[
u:lT'r'“in:u:.l__I

I

| oad the file
‘africa.chords’ in
the repmus—-tutorials
folder.

Try alsoc changing
‘mpoly’ param from 1
to 4, or 'delta’
from 1 to 20.

in 1/4 or 1/2 tone
for this example.

Fual here. Better be

=]

FIGURE 24

The tutorial for as->pw box.

42 - PatchWork - RepMus

s |=———————=— chordseq EEEI

g |
{:}-:uffS {:}chunnel stent
[Jins @ dur O dun N | LN | (TS
...... D z-:..:um 5
FIGURE 25 The output from as->pw box.

The beginning of the analysis file generated by AudioSculpt and opened in the text-win module :
(PARTIALS 122

(POINTS 2

0.016 258.236 2.711
0.162 258.236 2.711)
(POINTS 2

0.016 359.591 1.348
0.162 359.591 1.348)
(POINTS 2

0.016 520.252 2.131
0.162 520.252 2.131)
(POINTS 2

0.016 635.026 -16.256
0.162 635.026 -16.256)
(POINTS 2

0.168 259.297 -4.472
0.273 259.297 -4.472)
(POINTS 2

0.168 314.202 -5.420
0.273 314.202 -5.420)
(POINTS 2

0.168 408.783 6.391
0.273 408.783 6.391)

43 - PatchWork - RepMus

The RepMus Menus

The Chords etc. Menu

repmus Chords etc.
Metrics Modulations
AudioSculpt to Patchlork
Cribles

v wved

make-graph
graph-tour
mk-pred
map-chords
autotransp
mutation
copy-chords
chseq->poly

The Metrics Modulation Menu

repmus Chords etc.

Metrics Modulations
Audio5sculpt to Patchlllork

feuillete
tempo-intp

Cribles

The AudioSculpt to PatchWork Menu

Chords etc.
Metrics Modulations
Audio5culpt to Patchllork

repmus

The Cribles Menu
repmus

Chords etc.
Metrics Modulations
AudioSculpt to Patchilork

i

Cribles

Ic
eval-crible
crible-list
crible-rtm

44 - PatchWork - RepMus

Index

A

as->pw 41,42
Assayag G. 2
AudioSculpt 41,43
autotransp 18

C

Carter E. 28
chord-line 24,25
chord-object 25
chordseq 41
chordseq1 10
chordseq2 11
chseqg->poly 12,25,26
c-measure-line 37
copy-chords 24,26
crible-list 36
crible-rtm 37,38
Cribles 34

D

Duthen J. 2

E

eval-crible 35,38
Export Partials 41

F

feuillete 27
Fineberg J. 2

G

graph-tour 7,9

L

Laurson M. 2
Ic 34,38

M

make-graph 6,9
Malherbe C. 2
map-chords 13
McAllester D.A. 28
Metrics modulation 27

MIT 28
mk-pred 8,9
mutation 20

N

Nicolas F. 2,28

P

Pennsylvania University 28
poly-rtm 37

R

Riotte A. 2
rtm 37
Rueda C. 2

S

Screamer 28,31
Siskind J.F. 28

T

tempo-intp 31

45 - PatchWork - RepMus

	The Chords etc. Menu
	make-graph
	graph-tour
	mk-pred
	map-chords
	autotransp
	mutation
	copy-chords
	chseq->poly

	The Metrics Modulation Menu
	feuillete
	tempo-intp

	The Cribles Menu
	lc
	eval-crible
	crible-list
	crible-rtm
	The lc language

	The AudioSculpt to PatchWork Menu
	as->pw

	The RepMus Menus
	The Chords etc. Menu
	The Metrics Modulation Menu
	The AudioSculpt to PatchWork Menu
	The Cribles Menu

	Index

