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The Chords etc. Menu

make-graph

Syntax

Irepmusl::make-graph coll &optional pred
[function]

parameters

coll a list of list of midics (or any number) or a list of chord-objects or a chord-line object
pred (optional) must be the output of a mk-pred box.

output
a graph object. Generally the ouput of make-graph is connected to the graph input of a graph-tour box.
Description

Builds a relation graph between chords in a chord set.

The default relation is the amount of common notes between chords. The pred input can be used to change the relation.
make-graph may also be used to relate any kind of data that you can code into lists of numbers.
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graph-tour
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Syntax

Irepmusl::graph-tour graph solu &optional link order trav stat

[function]

parameters

graph the output of a make-graph box

solu positive integer. Choose a solution between 0 and n-1 (n is the number of chords)

link (optional, menu) if 'yes' adds a low common note when there is no common notes between 2 chords.

order (optional, menu) if '>=' maximize (default). If '<=' minimize (i.e. get path of maximum contrast).

trav (optional, menu) if 'short' (default) short path without repetitions. If 'long' long path with repeti-
tions.

stat (optional, menu) if 'norm' (default) outputs the solu(nth) solution. If 'stat', prints all the solutions
with an optimality factor.

output

Depends on the kind objects that have been put into the graph (see make-graph) :

If the graph was built with a list of lists of integers, output is a list of lists of integers.

If the graph was built with a list of chord-objects or a chord-line object, output is list of chord objects.
The output is generally connected to the chords input of a chordseq box.

Description

Builds a (quasi-) optimal path between chords that have been organized into a graph with the box make-graph. If the
relation used in make-graph is the amount of common notes, graph-tour delivers a sequence of chords where the
amount of common notes between successive chords has been maximized (or minimized). There are as many different-
solutions as there are nodes (i.e. chords) in the graph.
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mk-pred
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Syntax

Irepmusl::mk-pred val tol &restv

[function]

parameters

val integer, value to be compared with the difference between notes of chords.
tol integer, allowed deviation in the former comparison.

arg (optional, integer) additional value to be used like <val>

output

a predicate function object to be connected to the pred input of a make-graph box.

Description

This box is used in conjunction with the make-graph box. It defines a predicate used to compare elements in the ob-
jects (e.g. chords) put into the graph. Each element x (e.g. note) of each object (e.g. chord) is compared to each element
y of every other object. Then (y-x) is compared for equality to the parameter val, with the tolerance tol. Thus, for val
= 0 and <tol> = 0, strict equality (e.g. common notes relation) is seek.

For val = 100, hal-tone upward step relation is seek. If to/ = 25, then a quarter tone tolerance is allowed. If you build
a graph using make-graph with these values, then find an optimal path using graph-tour, what you get is a chord
sequence where there is a maximum number of half-tone steps between 2 consecutive chords, with a quarter tone tol-
erance.

If you add optional arguments (as many as you like), these values will be used to complexify the relation.

For instance, with <val> = 300, <opt-arg1> = 400, <opt-arg2> = 700,the optimisation will be : 'find a sequence where
consecutive chords have the max amount of minor 3rd, major 3rd and perfect 5th upward steps.'
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map-chords
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map-chords

Syntax

Irepmusl::map-chords chs1 chs2 cf ca cr cn approx penal

[function]

parameters

chs1 a list of chord-objects or a chord-line. This is the model.
chs2 a list of chord-objects or a chord-line. This is the reservoir.
cf integer, coefficient for common notes criteria

ca integer, coefficient for ambitus criteria

cr integer, coefficient for register criteria

cn integer, coefficient for number of notes criteria

approx an integer between 1 and 16. Microtone approximation used in comparisons. 2 = 1/2tone.
penal an integer >=0, penalty value for chord repetition

output

a list of chord-objects.
Description

map-chords takes a sequence of chords as a model, and another set of chords as a reservoir. Then it picks chords in
the reservoir and it builds up a new sequence from them, trying to make that sequence look as much as possible like
the model.

map-chords uses a euclidian distance measure between chords in the reservoir and chords in the model. Dimensions
used are : the number of common notes, the ambitus (dist from the bottom to the to of the chord), the register (the
gravity center of the chord), the difference in the number of notes. The user has the ability to give a weighting coef-
ficient for any of these criteria thus influing on the resolution. If O the criterium is totally ignored. Typical values are
between 0 and 10.

There is also a penalty parameter for chord repetition: if this value is high, a chord cannot be repeated in the sequence
except if its first occurence is very far behind. Values typically between 0 (no penalty) and 10.
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autotransp
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Syntax

Irepmusl::autotransp chords &optional band mode fund

[function]

parameters

chords a list of midics, or a chord-object, or a list of these, or a chord-line

band (optional) a list of 2 midics, to limit the pitches down and upwards

mode (optional, menu) if 'chrom' normal transposition, if 'spec' spectral transposition
fund (optional, midic) gives a fundamental if in 'spec' mode.

output

a list of lists of midics
Description

Takes a chord or a series of chords and builds the auto-transposition of these chords. The auto-transposition of a chord
is a set of chords resulting from transpositions of that chord, such that any note of the resulting chord is made equal to
any note of the original chord. There is also a 'spectral' mode where all the notes in the transpositions are approximed
to a harmonic partial of a fundamental that is specified.

If you specify a series of chords, autotransp will build the transposition set for every chords and put all the results
in sequence.
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The tutorial window for autotransp.
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mutation
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Syntax
Irepmusl::mutation chords inout
[function]

parameters

chords a list of list of midics, or a list of chord-object or a chord-line object.
inout controls the order in which notes are added and removed.

output
a series of chord in the form of a list of lists of midics.

Description

Computes a transition sequence between two or more chords.

mutation works differently from an interpolator it generates a series of small moves - take off a note here, add a note
there, move a note here etc. - that changes the first chord into the second. It does not introduce any note other than the
ones that are present in the chords. If given more than two chords it generates a sequence with the transitional chords
stuffed between the original chords.
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copy-chords
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Syntax

Irepmusl::copy-chords chords
[function]

parameters

chords a chord (in midics or object form) or a list of same, or a chord-line object.
output

same type as input.

Description

Deep copies a chord or chord list or chord sequence. Very useful to overcome some of PatchWork board-effects on
chords (i.e. editing a chord inside some editor causes a change in an other editor...)
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chseg->poly
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Syntax
Irepmusl::chseq->poly chseq del approx
[function]
parameters
chseq a list of list of midics, or a list of chord-objects or a chord-line object.
del positive integer, defines the time interval between two chords.
approx integer (1, 2, 4, 8) tells the approximation used for finding common notes.
output

A list of chord objects suitable for input to a chordseq module.
Description

Changes a sequence of chords in a polyphony where common notes between two chords are changed into a single sustained
note (harmonic link).
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The tutorial window for copy-chords and chseq->poly.
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The Metrics Modulation Menu

feuillete
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feuil late
Syntax
screamer::feuillete imp timp puls tpuls mes tmes vit npuls
[function]
parameters
imp integer or ratio, impulsion (1/16 = sixteenth note, 1/12 a triplet unit etc.)
timp integer, impulsion tempo (120 means 120 impulses in a mn)
puls integer or ratio, pulsation (1/4 = quarter note, 1/8 = eighth note etc.)
tpuls integer, pulsation tempo (60 means 60 pulsation in a mn)
mes integer or ratio, measure signature (3/4 means 3 quarter notes)
tmes integer, measure tempo (20 means 20 measures in a mn)
vit integer or ratio, number of subdivision of the pulsation (3 : triplet, 2/3: triplets with notes linked 2
by 2)
npuls integer, number of pulsation in a measure, an alternative to mes parameter
output

a c-measure-line object to be connected to a rtm box. All the solutions to the constraint system are put one after the
other.

Description
Builds a series of measures that obey to some constraints on metrics structure.

The metrics structure is defined with 3 levels : the measure (a group of pulsations), the pulsation (the unit denotated
by the measure signature's denominator), the impulsion (the subdivision of the pulsation, i.e. triplets inside quarter
notes in a 4/4 measure).

All the parameters can take a value of -1 which means : UNDEFINED. Generally you specify only some parameters, put
-1 in the others. This defines a constraint system that is solved for you by feuillete.

All the parameter can take a list instead of a single value. A list (v1 v2 ... vn) means that the considered parameter can
take any value among v1,v2,...,vn.

All the parameters can take a list of the form (b v1 v2). This means the considered parameter can take all the values
BETWEEN v1 and v2.

You can specify strange values like 5/16 for the pulsation. This means that there is a first level of WRITTEN pulsation
which is the quarter note (1/4), subdivided into 4 smaller unit (sixteenth notes). The smaller units are linked 5 by
5 (5/16) which lets you hear another pulsation. This is combinable with any impulsion speed (i.e. you can put triplets
in that perceived pulsation).
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This kind of manipulation can be very complex but you still have a precise control over what you are building. It is
very easy to generate for instance metrics modulation a la Carter. This module is inspired by Francois Nicolas paper :
"Le feuillete du tempo" thus the name. This module uses the Constraint Solver 'screamer' by J.F. Siskind and D.A. McAlI-
lester from Univ. of Pennsylvania and MIT.
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FIGURE 15 The tutorial window for feuillete.
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tempo-intp
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Syntax

screamer::tempo-intp begin end nsteps tol% dom ratio &optional sol

[function]

parameters

begin number, initial tempo

end number, final tempo

nsteps integer, number of interpolation steps

tol% integer, allowed deviation when reaching the final tempo.

dom integer, all ratios whose num and denum are smaller or equal to dom may be used.

ratio menu, 'any' means any ratio will do, '=' means all ratios must be equal, '->' means ratios are
increasing, '<-' means ratios are decreasing.

sol (optional, menu) 'seq' means all solutions are concatenated, 'list' means' all solutions are put into a
list.

output

Ac-measure-line to be connectedto artm box. If the sol parameter is 'list', a list of c-measure-line to be con-
nectedto apoly-rtm box. This option is also convenient to choose a solution among many, with the posn-match box.

Description

Builds a series of measures where the tempo changes smoothly from a starting value to an end value. At each step, a
metrics modulation is performed. Typical subdivisions of the beat (impulsions) are computed to optimize the modu-
lation. A set of ratios is used to pass from a measure to an other. You have control over these ratios : they can be always
the same, or increasing, or decreasing, or in any order.

You can specify a domain for the ratio. dom=3 means, 1, 2, 3, 1/2, 1/3, 2/3, 3/2 are allowed. The more ratios al-
lowed, the more solutions.

tempo-intp yields all the possible solutions in the constraint system specified by the parameter values. The solutions
are concatenated in a measure-line or gathered into a list, depending on the parameter sol.

This module uses the Constraint Solver 'Screamer' by J.F. Siskind and D.A. McAllester from Univ. of Pennsylvania and
MIT.
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The Cribles Menu
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Syntax
Irepmusl::lc prog-lc
[function]
binary operators
+ union
- intersection
* sieve composition
/ set difference
/1 set symetrical difference
unary operators
c (x) complementary sieve of the sieve 'x'
d(i1i2 .. in) defines an arbitrary sieve (i1 i2 ... in) with i1,i2... increasing integers
a(sbe) defines a random sieve with step close to 'a', between values 'b' and 'e'

e <lisp form> evaluates <lisp form>

examples : ¢ = e (append (c1) (reverse (c1)) computes a palindrome from the sieve c1 and puts it into c. If you use
sieve-symbols in <lisp form> put them between parentheses (e.g. (c1)).

p(s c1 c2 ... cn) where 's'is a symbol, 'c1'...'cn' are previously defined sieves. Computes a set partition of the set c1 U
c2 U ... cn. Then the subsets are put in symbols built from 's'.

Example : after evaluating p(x c1 c2 ¢3), the symbol x1 (resp. x2, x3) is set to contain the element of c1 (resp. c2
¢3) that are not elements of the 2 other sets. The symbol x12 contains elements common to ¢1 and c2 but not members
of ¢3. x13 and x23 follow the same model. x123 is the intersection of the three sets.

parameters

prog-lc the output of a text-win box

output
nil
Description

Computes a set of sieves (cribles) from a set of sieve expressions contained in a text-win box connected to it.

A sieve is a list of increasing positive integers. See the tutorial for examples of the language (I¢) used for writing sieve
expressions. Once evaluated, all the symbols that appear on the left side of the '=' operator (e.g. c1 in the expression
'c1 =c2 + c8') inside the text-win are defined and can be used in the eval-crible, crible-list and crible-rtm mod-
ules, in the crible parameter.

simple sieve : (step offset begin end)

example : ¢ = (2 0 0 8) defines a sieve with a period 2 between 0 and 8: (0 2 4 6 8)

c=(21410) defines (57 9).
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eval-crible

bt ]
eu-:ll—lq*iblq_

Syntax

Irepmusl::eval-crible crible

[function]

parameters

crible a symbol or a list of symbols

output

a sieve (a list of increasing integers) or a list of sieve
Description

Evaluates a symbol or a list of symbols defined with the I¢ box.
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crible-list

]|I ist ||n:r‘~i|:-|n1[

-:r*ible;;llist

Syntax

Irepmusl::crible-list list crible
[function]

parameters

crible a symbol or a list of symbols defined with a Ie¢ box
list a list

output
a list.

Description

Apply a sieve defined with the I¢ box to any list.
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crible-rtm

]|metr*ic||n:r*iblq[

ot

cribleazptm
Syntax
Irepmusl::crible-rtm metrique crible option
[function]
parameters
metrique ac-measure-line (output from a rtm box)
crible a symbol or a list of symbols defined with a I¢ box
option menu, 'silence' means impulsions ignored by the sieve are made silent, 'liaison' means a selected
impulsion is linked to following until next selected impulsion
output

ac-measure-line or a list of c-measure line, depending on the crible parameter. Connect to a rtm or poly-
rtm depending on the type of output.

Description

Apply a sieve defined with the I¢ box to a metric/rhythmic structure.
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FIGURE 22

The tutorial box for I ¢, crible-rtm, eval-crible
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The Ic language

;;; the Ic language

;;; define and manipulate sieves

;;; then use them on pitches or rythm

;;; always begin a line with the symbol '%'

;;; define simple sieves with period 2, 3, 5 between 0 and 100
% c2 =(200 30)

% c3 = (300 30)

% c5 = (500 30)

;;; define simple sieve with period 7, offset 2, between 2 and 16
% c7 =(72216)

;;; define the union of ¢2, ¢3, c5

% uu =c2+c3 +ch

;;; define the intersection of ¢7 and uu

% ii = ¢c7 - uu

;;; take from ¢3 elements in the composition of ¢2 by ¢3

% dd =¢3/ (c2 * c3)

;;; @ set containing elements of c2 not in ¢3 and elements of ¢3 not in c2
% ee =c2 // c3

;;; the complementary sieve of uu

% cuu=c (uu)

;;; an arbitrary sieve

% as=d(027 12 13 25 26 91)

;;; @a random sieve with period 'close' to 4 between 10 and 100
% rs = a(4 10 100)

;;; evaluate a lisp form : take off the last element of uu

;; note that uu MUST be inside parentheses

% Lf = e (reverse (rest (reverse (uu))))

;;; compute a partition of a set

;;; defines the sets x1,x2,x3,x12,x13,x23,x123 which are all the non-intersecting subsets
;;; that can be made out of 3 sets.

% pp = p (x c2 c3 cb)

The text file used in the Ic example
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The AudioSculpt to PatchWork Menu

as->pw
1| analygfvmin [g
n|vmaz [[del talg
p(mmir |[mmax |g
| approdnpo |y (g
as—rpl
Syntax
I[repmusl::as->pw analyse vmin vmax delta mmin mmax approx npoly
[function]
parameters
analyse connect here the output of a text-win module where you have read the analysis text file.
vmin, vmax integers, amplitudes will be scaled between vmin and vmax velocities
delta integer, events whose onset-time fall within a window of delta 1/100sec will be gathered into chords
mmin, mmax midic values that define the allowed pitch range for the output.
approx 1,2,4, or 8. Micro-tonal approximation.
npoly tries and reduce the polyphony to npoly notes at the same time by taking the louder partials first.
output

a list of chords to be connected to a chordseq module.
Description

Converts partials-analysis data, obtained within AudioSculpt by the 'Export Partials' command, in a suitable format
for displaying and manipulating in PatchWork.
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FIGURE 24

The tutorial for as->pw box.
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FIGURE 25 The output from as->pw box.

The beginning of the analysis file generated by AudioSculpt and opened in the text-win module :
( PARTIALS 122

( POINTS 2

0.016  258.236 2.711
0.162  258.236 2.711)
( POINTS 2

0.016  359.591 1.348
0.162  359.591 1.348)
( POINTS 2

0.016  520.252 2.131
0.162  520.252 2.131)
( POINTS 2

0.016  635.026 -16.256
0.162  635.026 -16.256)
( POINTS 2

0.168  259.297 -4.472
0.273  259.297 -4.472)
( POINTS 2

0.168  314.202 -5.420
0.273  314.202 -5.420)
( POINTS 2

0.168  408.783 6.391
0.273  408.783 6.391)
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The RepMus Menus

The Chords etc. Menu

repmus Chords etc.
Metrics Modulations
AudioSculpt to Patchlork
Cribles

v wved

make-graph
graph-tour
mk-pred
map-chords
autotransp
mutation
copy-chords
chseq->poly

The Metrics Modulation Menu

repmus Chords etc.

Metrics Modulations
Audio5sculpt to Patchlllork

feuillete
tempo-intp

Cribles

The AudioSculpt to PatchWork Menu

Chords etc.
Metrics Modulations
Audio5culpt to Patchllork

repmus

The Cribles Menu
repmus

Chords etc.
Metrics Modulations
AudioSculpt to Patchilork

i

Cribles

Ic
eval-crible
crible-list
crible-rtm
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