

PatchWork

Esquisse

First English Edition, February 1996

documentation
•	 Etudes et recherches

•	 Œuvres musicales

•	 Logiciels

© 1996, Ircam. All rights reserved.

This manual may not be copied, in whole or in part,

without written consent of Ircam.

This manual was written by Joshua Fineberg, the introduction was written by the

author and Tristan Murail, in collaboration with Curtis Roads, under the editorial

responsibility of Marc Battier - Marketing Office, Ircam.

Patchwork was conceived and programmed by

Mikael Laurson, Camilo Rueda, and Jacques Duthen.

The Esquisse library conceived and programmed by Jacques Duthen, Tristan Murail,

Camilo Rueda.

2nd edition of the documentation, February 1994.

This documentation corresponds to version 2.0 or higher of PatchWork, and ver-

sion 1.0 of the Equisse library.

Apple Macintosh is a trademark of Apple Computer, Inc.

PatchWork is a trademark of Ircam.

Ircam
1, place Igor-Stravinsky

F-75004 Paris
Tel. (33) (1) 44 78 49 62
Fax (33) (1) 42 77 29 47

E-mail ircam-doc@ircam.fr

IRCAM Users’ group

The use of this software and its documentation is restricted to members of the Ir-

cam software users’ group. For any supplementary information, contact:

Département de la Valorisation

Ircam

Place Stravinsky, F-75004 Paris

Tel. (1) 44 78 49 62

Fax (1) 42 77 29 47

E-mail: bousac@ircam.fr

Send comments or suggestions to the editor:

E-mail: bam@ircam.fr

Mail: Marc Battier,

Ircam, Département de la Valorisation

Place Stravinsky, F-75004 Paris

To see the table of contents of this
manual, click on the Bookmark Button
located in the Viewing section of the
Adobe Acrobat Reader toolbar.

Contents
Résumé .. 6

1. .. Introduction 7

2. ... Intervals 9

Menu Intervals->Generation 9
inter->chord .. 9
chord->inter ... 10
find-intervals ... 11

Menu Intervals->Treatment 12
remove-int .. 12
transpoct ... 13
mul-chord ... 13
all-inversions ... 14
auto-transp ... 14
best-transp ... 15
best-inv .. 15

Menu Intervals->Analysis 16
exist-note? ... 16
midi-center ... 16
sort-mod ... 17

3. ... Freq Harmony 18

Menu Freq harmony->Harm Series................. 18
harm-series .. 18
nth-harm .. 19

Menu Freq harmony->Modulations.................. 20
freq-mod ... 20
fm-rat io .. 21
ring-mod ... 22
r ing-harm ... 23

Menu Freq harmony->Treatment 24
fshift .. 24
fshif t-proc .. 25
fdistor .. 25
fdistor-proc .. 27

Menu Freq harmony->Analysis 28
harm-dist .. 28
closest-harm... 29
best-freq ... 29
v i r t - fund ... 30

4. ... Ut i l i t ies 31

l -d is to r /2 ... 31
l -d i s to r /3 ... 32
l * l ine ... 32
l * c u r b / 2 ... 33
l * c u r b / 3 ... 33

densifier... 34
min->sec .. 35
sec->min .. 35

5. ...MIDI 36

txtune ... 36

Esquisse Menus ..37

Index ..39

Résumé

Le librairie Esquisse pour PatchWork est constituée de modules répondant à des besoins spécifiques de la com-
position assistée par ordinateur. Comme toutes les librairies PatchWork, les modules sont accesibles dans un
menu spécifique de la fenêtre PW.
Le lecteur pourra consulter les exemples réalisés par plusieurs compositeurs, et tirés de leurs œuvres, élec-
troniques ou instrumentales.Ils sont rassemblés dans le dossier Documentation>Sample Patches>Es-
quisse du dossier PatchWork.

Les modules de la librairie Esquisse peuvent être classés en deux catégories : Interval et Freq. harmony.
Interval propose des fonctions pour la manipulation d’intervalles de hauteur.
Freq. harmony propose des fonctions axées sur la la manipulation de fréquences, dans la perscpetive de lier tim-
bre et harmonie. En ce sens, ces fonctions sont à rapprocher du mouvement musicale de ce qu’on appelle la «
musique spectrale ».
Ce manuel présente et explique en détail chaque module de la librairie.
6 - PatchWork — Esquisse

1. Introduction

Esquisse is a library of musical functions developed at IRCAM for specific needs of composers. It is different from
modules within PatchWork itself in that the functions it contains are intrinsically musical, and often linked to
specific techniques and aesthetics. The current Esquisse library is embedded in PatchWork; originally, Esquisse
was conceived in 1988 by a team working within the frame of Musical Research at Ircam. Members of the team
were : Pierre-François Baisnée, Jean-Baptiste Barrière, Marc-André Dalbavie, Magnus Lindberg, and Kaijia
Saariaho; members from the scientific department were Jacques Duthen and Yves Potard. At this time, Esquisse
had been written in Le_Lisp, with the help of. Esquisse was designed as a software layer built upon PreFORM,
which was an object-oriented environment with a graphic interface built as an extension to Le_Lisp, and had
been written by Lee Boyton at Ircam in 1986-87. At that time, PatchWork was an extra software layer built
"above" PreFORM: it was witin PatchWork that the composer could define and use graphical patches for compu-
ter-aided composition. In 1990, Pierre-François Baisnée merged Esquisse with PatchWork in Common Lisp,
which is an object-oriented flavor of the generic Lisp language. PreFORM was then abandoned and CLOS (Common
Lisp Object System) was used instead. As of this writing, PatchWork is developed within the same environement,
which is based on Macintosh Common Lisp.

This library should be seen as a work in progress. The functions provided are in no way meant to influence aes-
thetic choices; they are merely functions that have proven useful to various composers for the realization of both
acoustic and electronic works. Examples are available in the Tutorials folder show many compositional aspects
of these functions in specific musical contexts (either taken from pieces or invented for the purpose of demons-
tration).

The modules in Esquisse can be divided into two main parts: Intervals and Freq. Harmony.

Intervals contains functions for traditional types of intervallic manipulations of musical material. These func-
tions allow serial, post-serial, and combinatorial operations to be performed quickly and simply, avoiding la-
borious manual reckoning. An operation such as producing a chord multiplication can be performed using a
single module and taking less than a second. This ease and rapidity is valuable not so much to save time, but rather
to allow a level of suppleness not otherwise possible; the material can be fine-tuned repeatedly without forcing
the composer to spend hours recalculating chord multiplications after each refinement. Manipulations of these
modules can be performed with notes, traditional intervals (expressed as a number of semitones), or in set-
class notation; the units to be used can be selected by optional arguments explained in the documentation for each
module.

Freq. Harmony contains functions linked to a compositional movement centered in France and generally refered
to as Spectral Music. The composers in this movement derive their harmonies and timbres from calculations
performed directly with frequencies (instead of notes or intervals). These frequencies can be either used di-
rectly, when applied to electronic music, or approximated to the nearest available note, when used with tradi-
tional instruments. Since these functions are not tempered, we recommend that they be carried out with an
approximation smaller than the semitone (set the option under PWoper/Global Options/Approximation to 1/4
or 1/8 of a tone). Another application of these functions is to calculate precisely the results of electronic pro-
cesses, for example Frequency Modulation. If you take a Yamaha DX7 or DX7II digital synthesizer and select a
simple FM patch with one oscillator and one modulator in a certain ratio, you can use the module f m - r a t i o to
7 - PatchWork — Esquisse

see the frequencies of the sidebands that will be generated by the synthesizer. Adjusting the index argument pro-
duces results equivalent to adjusting the amplitude parameter of the DX7's modulator. This structure once ap-
proximated into notes could also be used as an instrumental harmony.

The Utilities section contains function similar to those found elsewhere in PatchWork ; the means of control,
however, are more intuitive, and more directly applicable to musical contexts.

The MIDI section is still in development, but will contain modules for controlling the manner in which musical
material generated in PatchWork will be treated by MIDI synthesizers.

This Reference Manual presents the modules in Esquisse in as consistent a way as possible. Each module (where
applicable) contains optional arguments that allow the user to determine the format of the output values and the
units of input and output parameters. The text of the module-by-module documentation is available as on-line
documentation. Input ands optional input arguments are listed by name followed by a description of the possible
input types.

atom—number or symbol not in parentheses

l is t—one or more atoms in parentheses

structured list—a list of lists

menu—options available by scrolling the mouse over the input box

Finally, please note that the Esquisse library was written by Camilo Rueda, Jacques Duthen and Tristan Murail.
It was revised by Tristan Murail and documented by Joshua Fineberg.
8 - PatchWork — Esquisse

2. Intervals

 Menu Intervals->Generat ion

inter->chord

Builds a chord from a list of intervals

Inputs

base (atom, list)

inter (l i s t)

Optional inputs

format (menu)

Constructs a chord starting with the note base and then adding the list of intervals inter (given in semitones;
positive or negative) to that base. Microintervals can be represented as floating-point number parts of a semi-
tone (e.g. a quartertone = 0.5). If base is a list, in ter ->chord constructs the same chord beginning on each
successive note.

The optional argument format allows a choice of whether the box functions in real intervals (setting inter) or
in set notation (setting notes). In set notation the first note is always 0; other notes are represented as a number
of semitones above 0. For example, a major triad in interval notation is (4,7) and in set notation (0,4,7). Using
inter returns the note base as well as the notes generated. Notes returns only the notes calculated, the base is
included only when 0 is one of the requested intervals.
9 - PatchWork — Esquisse

chord->inter

Converts a chord into a list of intervals

Inputs

chord (l i s t)

Optional inputs

format (menu)

chord-> inter returns a list containing the intervals (given in semitones; positive or negative) between the
first note of chords and each successive note. Microintervals are represented as floating-point number parts of
a semitone (e.g. a quarter-tone = 0.5).

If chords is a list of chords it will return a structured list containing the intervals of each successive chord.

The optional argument format allows a choice of whether the box returns real intervals (setting inter) or set
notation (setting notes). inter returns only the intervals between notes. notes returns the intervals present as
well as the first note, given as 0 . (See the documentation for the box in ter ->chord for further explanations
concerning the format option)
10 - PatchWork — Esquisse

find-intervals

Generates a list containing specified intervals

Inputs

amb (atom)

intervals (l i s t)

forbid (l i s t)

n (atom)

max (atom)

fixed (l i s t)

Optional inputs

format (menu)

f ind - in te rva ls attempts to generate a list or lists containing the specified intervals (given in semitones; po-
sitive or negative) within the range amb (if negative intervals were used the range become between + and -
amb). Microintervals may be represented as floating point number parts of a semitone (e.g. a quarter-tone =
0.5).

The number of intervals in each list found is determined by the argument n. If n is not at least twice the number
of intervals in intervals no solution is possible. In addition to the requested intervals other intervals will be
formed by this box. The argument forbid allows the exclusion of certain intervals from the resultant lists.

The argument max determines the maximum number of solutions returned (fewer may exist).

The argument fixed forces each list to contain that value or those values.

The optional argument format allows a choice of whether the box returns real intervals (setting inter) or set
notation (setting notes). Inter will return only the intervals between notes, without the first note. Notes returns
the intervals present as well as the first note, given as '0'.

Warning: a solution is not always possible; if none is found the value nil is returned.
11 - PatchWork — Esquisse

 Menu Intervals->Treatment

remove-int

Removes or replaces intervals

Inputs

chord (l ist, structured l ist)

forbid (atom, list)

Optional inputs

replace (atom, list)

inf (atom)

sup (atom)

remove- in t removes the interval forbid (given in midicents) from the list chord. The upper note of the for-
bidden interval is deleted.

A list of chords can be entered in chord, in which case the interval is removed from each successive chord. A list
of intervals for the argument forbid is also possible.

The optional argument replace takes the notes that would have been deleted and, instead, moves them to convert
the forbidden interval into the replacement.

The optional arguments inf and sup allow the low, inf , and high, sup, limits in which changes can take place to
be defined. These values are given in midicents, and refer only to the upper note in the interval pair.

Warnings: The lists returned by this box are ordered lowest note to highest note, regardless of the order in the
entries. Entries are in true midicents, without any internal approximation, this may provoke certain problems
which can be rectified through the use of the function approx-m prior to the entries.
12 - PatchWork — Esquisse

transpoct

Changes the octave transposition of a chord

Inputs

chord (l i s t)

min (atom)

max (atom)

Optional inputs

pivot (atom)

transpoct transposes notes of a chord or list of chords chord by octaves such that all its notes will be contained
within the range between min and max, given in midicents.

The optional argument pivot (a note, in midicents) forces all notes to be transposed so that they are within one
octave of that note. Pivot must be within the specified range, or an error is produced.

mul-chord

Performs a chord multiplication

Inputs

ch1 (l i s t)

ch2 (l i s t)

Optional inputs

type (menu)

mul-chord generates a list of chords in which the intervallic structure of ch2 (a single chord in midicents)
is reproduced beginning on each successive note of ch1 (also a single chord in midicents).

The optional argument type allows the choice of whether the output is a list of chords (seq) or a single chord
(chord) containing all the transpositions combined.
13 - PatchWork — Esquisse

all-inversions

Lists all inversions of a chord

Inputs

chord (l i s t)

direction (menu)

Optional inputs

format (menu)

a l l - invers ions generates a structured list of all possible inversions of chord (in midicents). Inversion here
means the moving of the highest note down by octaves so as to make it the new bass note (when direction is '>'),
or moving the lowest note up by octaves to make it the highest (when direction is '<'). The output is a list of
chords containing the inversions, beginning on each successive note of chord. For example, the triad C-E-G
would retun either E-G-C and G-C-E or G-C-E and E-G-C.

The optional argument format allows the choice of whether the original chord will be included, inclu or excluded,
exclu from the output list.

Warning: chord can take only a single chord.

auto-transp

Lists transpositions of a chord

Inputs

chord (l i s t)

Optional inputs

output (menu)

min (atom)

max (atom)

auto-transp outputs a list of all possible transpositions of chord (a single chord in midicents) which contain
the first note of the chord. The optional argument output allows the choice of whether the original chord will be
included, inclu or excluded, exclu from the output list. The optional arguments max and min (in midicents) will
cause the notes to be transposed by octaves to fit within the specified range.
14 - PatchWork — Esquisse

best-transp

Transposes one chord close to a second

Inputs

ch1 (l is t)

ch2 (l i s t)

Optional inputs

function (menu)

Transposes the chord ch2 (a single chord in midicents) so that its intervallic distance to ch1 (also a single chord
in midicents) is as small as possible. Thus the distance between each note of ch2 and each note of ch1 becomes as
small as possible. This is essentially the same as the box best-inv except the ordering of ch2 is preserved. The
optional argument fct allows the choice between two different algorithms for calculating this function, sum and
max. The default is sum because max can produce quarter tones from semitone input. For best results one should
experiment with both and chose according to context.

best-inv

Inverts and transposes one chord close to a second

Inputs

regch (l i s t)

intch (l ist, struictured l ist)

Optional inputs

function (menu)

Extracts the intervallic content of the chord intch (in midicents) and through a global transposition of the chord
followed by octave transpositions of individual notes produces a chord with the intervals of intch whose notes are
as close as possible to those of the chord regch (also in midicents). This in essence distorts the chord regch by
the smallest amount possible for it to take on the intervallic structure of intch. regch must be a single chord.
intch may be a list of chords (also in midicents) from which the one that distorts least regch is used for the ope-
ration. The output will still be a single chord.

The optional argument fct allows the choice between two different algorithms for calculating this function, sum
and max. The default is sum because max can produce quarter tones from semione input. For best results one
should experiment with both and choose according to context.
15 - PatchWork — Esquisse

 Menu Intervals->Analysis

exist-note?

Finds whether a pitch is present within a chord

Inputs

chord (l ist, structured l ist)

note (atom, list)

Outputs the first note in chord (a single chord in midicents), which is the same as note (regardless of octave).
The value returned is the midicents value of that note at the octave it exists in the chord. If the note is not present
the value n i l is returned.

The argument chord may receive a list of chords; in which case the output is a list of lists containing the analyses
of each successive chord.

The argument note may receive a list; in which case the output is a corresponding list of notes found and/or nils.

midi-center

Finds the central midi value of a chord

Inputs

chord (l ist, structured l ist)

Calculates the value in midicents exactly halfway between the lowest and highest notes of the chord chord.

If chord is a list of chords, the output is a list of the central values.
16 - PatchWork — Esquisse

sort-mod

Sorts a list of notes by interval

Inputs

chord (l ist, structured l ist)

Returns a sorted list of lists in which each note of the chord chord (in midicents) is converted into a list contai-
ning the interval in midicents of that note from the C below it, followed by the midicents value of that C. A list
of chords also may be entered for chord the resulting list will, however, have a higher level of structure and may
not be acceptable as entry for some other boxes.
17 - PatchWork — Esquisse

3. Freq Harmony

 Menu Freq harmony->Harm Series

harm-series

Generates a harmonic series

Inputs

fund (atom, list)

numer (atom, list)

denom (atom, list)

begin (atom)

end (atom)

Optional inputs

unit (menu)

type (menu)

Builds the harmonic and/or subharmonic series starting with the fundamental fund. The harmonic series is the
series of positive integer multiples of the fundamental frequency. The subharmonic series is the series of posi-
tive integer divisions of the fundamental frequency.

The arguments numer and denom determine what sample (numer/ denom) of the partials is taken. (e.g. 1/1 =
all; 1/2 = every other; 2/5 = the first two of each group of five)

The arguments begin and end determine the lowest and highest partials generated. The fundamental is represented
by '1' or '-1' sub-harmonics are represented by negative numbers, overtones by positive. (e.g. partial number
7 is 7 times the fundamental frequency,partial -7 is the fundamental frequency divided by 7; thus to go from
the seventh undertone to the seventh overtone begin would equal '-7' and end would equal '7')

The optional argument unit determines whether the fund is entered in midicents, (midic), or in Hertz (freq). I f
midic is selected the value will be converted to frequency inside the function and then the output is reconverted
18 - PatchWork — Esquisse

to midicents. If freq is selected, the entry, calculation and output are all in Hertz.

When fund is a list, the optional argument type is used to determine the format of the output. The value seq re -
turns a list of chords representing the partials requested for each successive fundamental. The value chord re -
turns a single chord containing all the partials of all the fundamentals.

nth-harm

Generates a harmonic series

Inputs

fund (atom, list)

nth (atom, list)

Optional inputs

unit (menu)

type (menu)

Receives a fundamental fund, or list of fundamentals and returns the nth harmonic or sub-harmonic of each fun-
damental. The harmonic series is the series of positive integer multiples of the fundamental frequency. The sub-
harmonic series is the series of positive integer divisions of the fundamental frequency. Partial numbers are
determined by their relationship to the fundamental. (e.g. partial number 7 is 7 times the fundamental frequen-
cy,partial -7 is the fundamental frequency divided by 7)

If nth is a list, a corresponding series of partials will be returned for each fund. If nth contains non-integers
the returned partials and/or sub-partials will be non-harmonic, and correspond to the fundamental frequency
multiplied by nth (when nth is positive) or the fundamental frequency divided by the absolute value of nth (when
nth is negative).

The optional argument unit determines whether the fund is entered in midicents, (midic), or in Hertz (freq). I f
midic is selected, the value will be converted to frequency inside the function. The output then is reconverted to
midicents. If freq is selected the entry, calculation and output are all in Hertz.

When fund is a list, the optional argument type is used to determine the format of the output. The value seq re -
turns a list of chords representing the partials requested for each successive fundamental. The value chord re -
turns a single chord containing all the partials of all the fundamentals.
19 - PatchWork — Esquisse

 Menu Freq harmony->Modulations

freq-mod

Simulates frequency modulation

Inputs

carr ier (atom, list)

modul (atom, list)

index (atom, list)

Optional inputs

unit (menu)

output (menu)

Simulates the pitches generated by frequency modulation. The frequencies of the carrier carr ier and the modu-
lator modul are treated according to the following formula: carrier ± (i * mod.), i = 0,1,...index

If carr ier is a list the output is a list of modulations around each successive carrier.

If modul is a list the carrier or carriers are each modulated by all the notes in modul as well as the partials of
those notes up to the index specified.

If index is a list the formula is computed with 'i' equal to only the listed values. (e.g. index = (1 3), notes cal-
culated are:

carr. + 1 * mod.; carr. - 1 * mod.;carr. + 3 * mod.; carr. - 3 * mod.)

The optional argument unit determines whether the <carrier> and <modul> are given in midicents, (midic) , or
in Hertz (freq). If midic is selected the values will be converted to frequency inside the function and then the
output is reconverted to midicents. If freq is selected the entry, calculation and output are all in Hertz.

The optional argument output determines whether the carriers are included (inclu) or excluded (exclu) from
the output list or lists.
20 - PatchWork — Esquisse

fm-ratio

Simulates frequency modulation

Inputs

carr ier (atom, list)

ratio (atom, list)

index (atom, list)

Optional inputs

unit (menu)

output (menu)

f m - r a t i o simulates the pitches generated by frequency modulation. The frequency of the carr ier is modulated
by a modulator whose frequency is equal to the frequency of the carrier multiplied by the ratio. Once the fre-
quency of the modulator is determined, the calculations follow the same formula as the box freq-mod :

carrier ± (i * modulator), i = 0,1,...index

If carr ier is a list the output is a list of modulations around each successive carrier.

If ratio is a list the carrier or carriers are each modulated by the frequencies that form all the requested ratios
as well as the partials of those notes up to the index specified.

If index is a list the formula is computed with i equal to only the listed values. For index = (1 3), the notes cal-
culated are:

carr. + 1 * modulator

carr. - 1 * modulator

carr. + 3 * modulator

carr. - 3 * modulator

The optional argument unit determines whether the carr ier is entered in midicents, (midic), or in Hertz (freq) .
If midic is selected the value will be converted to frequency inside the function and then the output is reconverted
to midicents. If freq is selected the entry, calculation and output are all in Hertz.

The optional argument output determines whether the carrier or carriers are included (inclu) or excluded (ex-
clu) from the output list or lists.
21 - PatchWork — Esquisse

ring-mod

Simulates ring modulation

Inputs

ch1 (atom, list, structured list)

ch2 (atom, list)

Optional inputs

unit (menu)

type (menu)

output (menu)

r ing-mod simulates the ring modulation of each note of ch1 by all the notes of ch2. The frequency of each note
of ch2 is added to and subtracted from the frequency of each note of ch1; thus, all the possible additive and sub-
tractive combinations are produced.

The optional argument unit determines whether ch1 and ch2 are entered in midicents, (midic), or in Hertz
(freq). If midic is selected, the values will be converted to frequencies inside the function and then the output is
reconverted to midicents. If freq is selected, the entries, calculations and output are all in Hertz.

Note: Ring-modulation can produce negative frequencies; conversion to midicents will automatically reflect the-
se notes back into the positive domain.

When ch1 contains multiple notes, the optional argument type is used to determine the format of the output. The
value seq returns a list of chords representing the modulation of each successive note of ch1 by all the notes of
ch2. The value chord returns a single chord containing all the notes of all the modulations.

The optional argument output determines whether the original notes of ch1 and ch2 are included (inclu) or ex-
cluded (exclu) from the output list or lists.
22 - PatchWork — Esquisse

ring-harm

Simulates ring modulation of two harmonic series

Inputs

funda (atom, list)

fundb (atom, list)

hqa (atom, list)

hqb (atom, list)

Optional inputs

unit (menu)

type (menu)

output (menu)

r i n g - h a r m simulates the ring-modulation between the harmonic series (see box harm-series) built on funda
and the harmonic series on fundb. The arguments hqa and hqb determine the number of partials present for each
fundamental. The frequencies of each partial of the harmonic series on funda is added to and subtracted from the
frequency of each partial of the harmonic series on fundb; thus, all the possible additive and subtractive com-
binations are produced.

If the arguments hqa or hqb are a list, rather then including all the partials up to and including the number given:
only the listed partials for both fundamentals will included in the calculations.

The optional argument unit determines whether funda and fundb are given in midicents, (midic), or in Hertz
(freq). If midic is selected the values will be converted to frequencies inside the function and then the output is
reconverted to midicents. If freq is selected the entries, calculations and output are all in Hertz. (note: Ring-
modulation can produce negative frequencies; conversion to midicents will automatically reflect these notes back
into the positive domain.)

The optional argument type is used to determine the format of the output. The value seq returns a list of chords
in which each successive chord represents the notes involving the next partial or partials. Thus the first chord
contains: funda ± fundb; the second: 2*funda ± fundb, funda ± 2*fundb and 2*funda ± 2*fundb; etc. The value
chord returns a single chord containing all the notes of all the combinations and differences.

The optional argument output determines whether the notes funda and fundb are included (inclu) or excluded
(exclu) from the output list or lists.
23 - PatchWork — Esquisse

 Menu Freq harmony->Treatment

fshift

Simulates frequency shifting

Inputs

chord (atom, list, structured list)

dfreq (atom, l ist)

Optional inputs

unit (menu)

type (menu)

output (menu)

fsh i f t shifts the frequency of each note of chord by a frequency dfreq (positive or negative, but always in Hertz).

The optional argument unit determines whether chord is entered in midicents, (midic), or in Hertz (freq). I f
midic is selected the values will be converted to frequencies inside the function and then the output is reconverted
to midicents. If freq is selected the entry, calculations and output are all in Hertz.

If chord is a list of chords the optional argument type is used to determine whether the output will be a list of
chords (seq), each one shifted by dfreq or a single chord combining the notes of all the shifted chords (chord). I f
dfreq is a list the same argument is used to choose between a list of chords shifted by each successive dfreq or a
single chord combining the different distortions. If both chord and dfreq are lists the position seq will return a
list of chords containing each chord shifted by each frequency; the position chord will return a list of chords
containing each chord shifted by all the listed frequencies.

The optional argument output determines whether the original chord is included (inclu) or excluded (exclu)
from the output list.
24 - PatchWork — Esquisse

fshift-proc

Frequency shifts progressively

Inputs

chord (atom, list, structured list)

dfreq (atom, l ist)

steps (atom)

Optional inputs

unit (menu)

output (menu)

Progressively shifts chord until the final chord which is shifted by dfreq (positive or negative, but always in
Hertz). The argument steps determines the number of intermediate distortions to be produced between the unal-
tered chord and the chord shifted by dfreq.

The argument chord may be a list, in which case the same process of shifting is carried out for each successive
chord.dfreq and steps may not be lists.

The optional argument unit determines whether chord is entered in midicents, (midic), or in Hertz (freq). I f
midic is selected the values will be converted to frequencies inside the function and then the output is reconverted
to midicents. If freq is selected the entry, calculations and output are all in Hertz.

The optional argument output determines whether the non-shifted chord is included (inclu) or excluded (exclu)
from the output list of chords.

fdistor

Simulates frequency distortion
25 - PatchWork — Esquisse

Inputs

chord (atom, list, structured list)

minout (atom, list)

maxout (atom, list)

Optional inputs

minin (l i s t)

maxin (l i s t)

unit (menu)

output (menu)

fdlstor distorts the frequencies of chord so that the lowest note is changed to minout and the highest note to
maxout. Interior notes are rescaled so as to preserve the relative positions of their frequencies.

The optional inputs minin and maxin allow the scaling to be done relative to two selected reference notes rather
than the highest and lowest notes of the chord. The note entered as minin will be moved to minout, and maxin to
maxout the rest of the chord is then rescaled accordingly.

If chord is a list of chords, output will be a corresponding list of distorted chords.

The optional argument unit determines whether chord is entered in midicents, (midic), or in Hertz (freq). I f
midic is selected the values will be converted to frequencies inside the function and then the output is reconverted
to midicents. If freq is selected the entry, calculations and output are all in Hertz.

The optional argument output determines whether the non-distorted chord is included (inclu) or excluded (ex-
clu) from the output list. If included the non-distorted notes will be mixed with the distorted into a single chord.
26 - PatchWork — Esquisse

fdistor-proc

Frequency distorts progressively

Inputs

chord (atom, list, structured list)

steps (atom)

minout (atom, list)

maxout (atom, list)

Optional inputs

fminin (l i s t)

maxin (l i s t)

unit (menu)

output (menu)

fd ls tor -proc progressively distorts chord until the distortion specified by minout and maxout is reached. The
argument steps determines the number of intermediate distortions to be produced between the unaltered chord
and the final distortion. (For explanation of frequency distortion, as well as the use of minout, maxout, minin
and maxin see the box 'fdistor')

chord may not be a list of chords.

The optional argument unit determines whether chord is entered in midicents, (midic), or in Hertz (freq). I f
midic is selected the values will be converted to frequencies inside the function and then the output is reconverted
to midicents. If freq is selected the entry, calculations and output are all in Hertz.

The optional argument output determines whether the non-distorted chord is included (inclu) or excluded (ex-
clu) from the output list of chords.
27 - PatchWork — Esquisse

 Menu Freq harmony->Analysis

harm-dist

Calculates the distance from a harmonic series

Inputs

chord (atom, list, structured list)

fund (atom, list)

Optional inputs

unit (menu)

harm-d is t calculates the ratios between each note of chord and the closest partial of the harmonic series built
on fund. (For explanations of harmonic series and partials, see the box harm-ser ies ; to decide on an approriate
fundamental, the box v i r t - f u n d may be useful)

If chord is a list of chords the result consists of the analyses of each successive chord.

The optional argument unit determines whether chord and fund are entered in midicents, (midic), or in Hertz
(freq). If midic is selected the notes will be converted to frequencies inside the function before analysis.
28 - PatchWork — Esquisse

closest-harm

Finds the closest harmonic partials

Inputs

chord (atom, list, structured list)

fund (atom, list)

Optional inputs

unit (menu)

type (menu)

closest-harm calculates the closest partial of the harmonic series built on fund to each note of chord. (For
explanations of harmonic series and partials, see the box harm-series)

If chord is a list of chords the result will be the analyses of each successive chord.

The optional argument unit determines whether chord is entered in midicents, (midic), or in Hertz (freq). I f
midic is selected the values will be converted to frequencies inside the function and then the output (if appro-
priate) is reconverted to midicents. If freq is selected the entry, calculations and output (if appropriate) are all
in Hertz.

The optional argument type determines whether the output is a list of partial rankings or the notes corresponding
to those partials.

best-freq

Finds the best central frequency

Inputs

chord (atom, list, structured list)

Optional inputs

unit (menu)

best - f req returns the note that is the minimum possible distance from the frequencies of all the notes of chord
, where the distance is measured is the minimum sum of the squares of the distances. This note can be thought of
as a sort of "center of gravity" for chord (it is not usually a member of the chord).

If chord is a list of chords, the box returns a list of best frequencies.

The optional argument unit determines whether chord is entered in midicents, (midic), or in Hertz (freq). I f
29 - PatchWork — Esquisse

midic is selected the values will be converted to frequencies inside the function and then the output is reconverted
to midicents. If freq is selected the entry, calculations and output are all in Hertz.

virt-fund

Calculates the virtual fundamental

Inputs

chord (atom, list, structured list)

cents (atom)

Optional inputs

unit (menu)

Returns the highest fundamental for which the notes of chord could be thought of as harmonic partials. In general,
the lower the virtual fundamental, the more dissonant the chord.

The argument cents determines the precision of the analysis. (a value of '0' would return the real fundamental;
the larger the value the more approximate the result)

If chord is a list of chords, the box returns a list of virtual fundamentals.

The optional argument unit determines whether chord is entered and the result returned in midicents, (midic) ,
or in Hertz (freq). The argument cents remains, however, unchanged.
30 - PatchWork — Esquisse

4. Utilities

l-distor/2

Exponentially distorts a list

Inputs

newmin (atom)

newmax (atom)

liste (l i s t)

l - d i s t o r t / 2 distorts a list, liste, by a power function, thus if the list is linear the result follow the power
function, if the list is non-linear the result will be a hybrid of the old liste and the power function.

The arguments newmin and newmax determine the scaling of the new list. (newmin will be the smallest value
present, newmax the largest)
31 - PatchWork — Esquisse

l-distor/3

Exponentially distorts a list

Inputs

newmin (atom)

newmax (atom)

ref (atom)

newref (atom)

liste (l i s t)

Distorts a list, liste, by a power function, thus if the list is linear the result will follow the power function, if
the list is non-linear the result will be a hybrid of the old liste and the power function. This box is identical to
l - d i s t o r / 2 except that a reference point is controllable.

The arguments newmin and newmax determine the scaling of the new list. (newmin will be the smallest value
present, newmax the largest) The values ref and newref are used to specify that the element of the original list
with a value of ref will be moved to the value of newref. The curve is altered in order to accommodate the refe-
rence point.

l*line

Multiplies a list by a linear function

Inputs

fact1st (atom)

factlast (atom)

liste (l i s t)

l * l i n e multiplies a list, liste, by a linear function. The first element is multiplied by fact1st, the last by fact-
last and all intermediate elements by linear interpolations between those values.
32 - PatchWork — Esquisse

l*curb/2

Multiplies a list by a power function

Inputs

fact1st (atom)

factlast (atom)

liste (l i s t)

Multiplies a list, liste, by a power function. The first element is multiplied by fact1st, the last by factlast and
all intermediate elements by interpolations along a power function between those values.

l*curb/3

 Multiplies a list by a power function

Inputs

fact1st (atom)

factlast (atom)

ref (atom)

factref (atom)

liste (l i s t)

Multiplies a list, liste, by a power function. This box is identical to l * c u r b / 2 except that a reference point is
controllable. The first element is multiplied by fact1st, the last by factlast and the element of the original list
with a value of ref will be multiplied by factref. All intermediate elements will be multiplied by interpolations
along a power function between fact1s> and factlast. The power function, however, is altered to accommodate the
reference point.
33 - PatchWork — Esquisse

densifier

Increases the density of a list

Inputs

l is t (l is t)

density (atom)

Optional inputs

min (atom)

max (atom)

densif ier increases the density of a l is t by adding equally spaced values between each of its elements. The num-
ber of added values is determined by the argument density, which is equal to the number of values added between
each pair of elements.

The optional arguments min and max allow the densification to take place within only a portion of the list. Values
will only be added between pairs of elements in which both members are at least min and no greater than max;
all other parts of the list are returned unchanged.
34 - PatchWork — Esquisse

min->sec

Converts minutes to seconds

Inputs

minutes (l i s t)

min->sec converts values in minutes into values in seconds. The value in minutes may be entered as a list in
any of the following formats: (3 min), or (3 0); (3 min 30), or (3 30), or (3.5 min); (3 min 30.2), or (3
30.2). (the letters 'min' may be replaced by simply 'm' or any other non-numeric character or characters).

sec->min

Converts seconds to minutes

Inputs

lsec (atom, list)

Optional inputs

nbdec (atom)

format (menu)

sec-min converts values in seconds (lsec)to values in minutes and seconds. The optional argument nbdec de-
termines the number of decimals in the seconds column of the output.

The output is in the format 1 min 15 for an lsec equal to '75'. If the number of seconds is less than sixty the
output will be in the form 0 min 32. The optional argument format, if set to the position abbrev, will eliminate
the minutes column if it has a value of '0'. (The first example would remain 1 min 15 while the second would
become '32')
35 - PatchWork — Esquisse

5. MIDI

txtune

Sends global tuning parameters to a Yamaha TX-816

Inputs

tuning (atom, list)

chans (atom, list)

txtune sends global tuning parameters to a Yamaha TX-816 FM Tone Generator. The value tuning is sent to the
MIDI channel specified, chans. If chans is a list, the tuning is sent to all listed channels.
36 - PatchWork — Esquisse

Esquisse Menus
37 - PatchWork — Esquisse

38 - PatchWork — Esquisse

Index
0 10

A
all-inversions 14
approx-m 12
atom 8
auto-transp 14

B
Baisnée P.-F. 7
Barrière J.-B. 7
best-freq 29
best-inv 15
best-transp 15
Boyton L. 7

C
chord multiplication 7
chord->inter 10
CLOS 7
closest-harm 29

D
Dalbavie M.-A. 7
densifier 34
Duthen J. 2, 7

E
exist-note? 16

F
fdistor 25
fdistor-proc 27
fdlstor 26
fdlstor-proc 27
find-intervals 11
Fineberg J. 2
fm-ratio 21
Freq. Harmony 7
freq-mod 20
Frequency Modulation 7
fshift 24
fshift-proc 25

H
harm-dist 28
harm-series 18

I
inter->chord 9
interval notation 9
Intervals 7, 9

L
l*curb/2 33
l*curb/3 33
l*line 32
Laurson M. 2
l-distor/2 31
l-distor/3 32
l-distort/2 31
Le_Lisp 7
Lindberg M. 7
list 8

M
Macintosh Common Lisp 7
menu 8
midi-center 16
min->sec 35
mul-chord 13
Murail T. 2

N
nth-harm 19

P
PatchWork 7
Potard Y. 7
PreFORM 7

R
real fundamental 30
remove-int 12
ring-harm 23
ring-mod 22
Roads C. 2
Rueda C. 2

S
Saariaho K. 7
sec->min 35
sec-min 35
set notation 9
set-class notation 7
sort-mod 17
Spectral Music 7
structured list 8
39 - PatchWork - Esquisse

T
transpoct 13
txtune 36
V
virt-fund 30
virtual fundamental 30

Y
Yamaha DX7 7
Yamaha TX-816 FM Tone Generator 36
40 - PatchWork - Esquisse

	Contents
	Résumé
	1. Introduction
	2. Intervals
	Menu Intervals->Generation
	inter->chord
	Builds a chord from a list of intervals

	chord->inter
	Converts a chord into a list of intervals

	find-intervals
	Generates a list containing specified intervals

	Menu Intervals->Treatment
	remove-int
	Removes or replaces intervals

	transpoct
	Changes the octave transposition of a chord

	mul-chord
	Performs a chord multiplication

	all-inversions
	Lists all inversions of a chord

	auto-transp
	Lists transpositions of a chord

	best-transp
	Transposes one chord close to a second

	best-inv
	Inverts and transposes one chord close to a second...

	Menu Intervals->Analysis
	exist-note?
	Finds whether a pitch is present within a chord

	midi-center
	Finds the central midi value of a chord

	sort-mod
	Sorts a list of notes by interval

	3. Freq Harmony
	Menu Freq harmony->Harm Series
	harm-series
	Generates a harmonic series

	nth-harm
	Generates a harmonic series

	Menu Freq harmony->Modulations
	freq-mod
	Simulates frequency modulation

	fm-ratio
	Simulates frequency modulation

	ring-mod
	Simulates ring modulation

	ring-harm
	Simulates ring modulation of two harmonic series

	Menu Freq harmony->Treatment
	fshift
	Simulates frequency shifting

	fshift-proc
	Frequency shifts progressively

	fdistor
	Simulates frequency distortion

	fdistor-proc
	Frequency distorts progressively

	Menu Freq harmony->Analysis
	harm-dist
	Calculates the distance from a harmonic series

	closest-harm
	Finds the closest harmonic partials

	best-freq
	Finds the best central frequency

	virt-fund
	Calculates the virtual fundamental

	4. Utilities
	l-distor/2
	Exponentially distorts a list

	l-distor/3
	Exponentially distorts a list

	l*line
	Multiplies a list by a linear function

	l*curb/2
	Multiplies a list by a power function

	l*curb/3
	Multiplies a list by a power function

	densifier
	Increases the density of a list

	min->sec
	Converts minutes to seconds

	sec->min
	Converts seconds to minutes

	5. MIDI
	txtune
	Sends global tuning parameters to a Yamaha TX-816

	Esquisse Menus
	Index

