

OpenMusic
LZ 2.2 Library

version 2

Third Edition, November 2001

documentation
• Research reports

• Musical works

• Software

© 2001, Ircam. All rights reserved.

This manual may not be copied, in whole or in part, without written consent of Ircam.

This documentation was written by Gérard Assayag and Olivier Lartillot, and was produced under the
editorial responsibility of Marc Battier, Marketing Office, Ircam.

OpenMusic was conceived and programmed by Gérard Assayag and Carlos Agon.

The LZ library was originally conceived and programmed by Gérard Assayag. Version1 by G. Assayag.
Versions 2 2.x by O. Lartillo.

Statistical Model and algorithm by S. Dubnov and G. Assayag.
Improvements by O. Lartillot

Third edition of the manual, November 2001.

This documentation corresponds to version 2.2 of the LZ library, and to version 2.0 or higher of
OpenMusic.

Apple Macintosh is a trademark of Apple Computer, Inc.
OpenMusic is a trademark of Ircam.

Ircam
1, place Igor-Stravinsky

F-75004 Paris
Tel. 01 44 78 49 62
Fax 01 44 78 15 40

E-mail ircam-doc@ircam.fr

Groupe d'utilisateurs Ircam

L'utilisation de ce programme et de sa documentation est
strictement réservée aux membres des groupes d'utilisateurs de
logiciels Ircam. Pour tout renseignement supplémentaire,
contactez :

Département de la Valorisation
Ircam
1, Place Stravinsky
F-75004 Paris
France

Courrier électronique: bousac@ircam.fr

Veuillez faire parvenir tout commentaire ou suggestion à :

M. Battier
Département de la Valorisation
Ircam
1, Place Stravinsky, F-75004 Paris, France

Courrier électronique : bam@ircam.fr

http://www.ircam.fr/forumnet

To see the table of contents of this
manual, click on the Bookmark Button
located in the Viewing section of the
Adobe Acrobat Reader toolbar.

To move between pages,
use Acrobat Reader navigations buttons
 or your keyboard’s arrow keys

Content

1 LIBRARY PRESENTATION .. 1

Introduction ...1

Dictionary-based prediction .. 2

Incremental Parsing.. 2

Aleatory Generation .. 3

Relation to Markov models ... 3

The Library... 4

New features of the 2.2 version. ...4
New features of the 2.1 version. ...4
New features of the 2.0 version. ...4

2 LIBRARY REFERENCE .. 6

LZify ... 6

LZgenerate .. 7

PSTify ... 9

PSTgenerate .. 11

midi->cross ... 12

listmidi->cross .. 14

cross->chordseq ... 15

midi->chordseq ... 16

lzprint .. 17

pstprint tree .. 19

lzprintreconstr ... 20

lzsize .. 21

lzlength .. 22

lzuntree ... 23

crop .. 24

timescaler .. 25

transposer .. 26

3 LIBRARY TUTORIAL ... 27

4 ANNEX ... 28

1

- OpenMusic -

LZ 2.2 Lib

rary

1 LIBRARY PRESENTATION

1.1. Introduction

It is commonly admitted (see the long paper “ Automatic Modeling of Musical Style” (ICMC.rtf)) that
musical perception is guided by expectations based on the recent past context. Predictive theories are
often related to stochastic models which estimate the probability for musical elements to appear in a
given musical context, such as Markov chains, already used extensively in computer music. The main
problem with these models is that the length of musical context (size of memory) is highly variable, rang-
ing from short figurations to longer motifs. Taking a large fixed context makes the parameters difficult
to estimate and the computational cost grows exponentially with the size of the context. We have de-
signed a new model which builds a statistical representation of any polyphonic musical sequence, and
then lets you generate variants of these sequences in the same style .

2

- OpenMusic -

LZ 2.2 Lib

rary

1.2. Dictionary-based prediction

We use a dictionary-based prediction method, which parses an existing musical text into a lexicon of
phrases/patterns, called

motifs

, and provides an inference method for choosing the next musical object
following a current past

context

. The parsing scheme must satisfy two conflicting constraints. On the one
hand, one wants to maximally increase the dictionary to achieve better prediction, but on the other
hand, enough evidence must be gathered before introducing a new phrase, so that a reliable estimate
of the conditional probability is obtained. The secret of dictionary-based prediction (and compression)
methods is that they cleverly sample the data so that most of the information is reliably represented by
few selected phrases. This could be contrasted to better known Markov models that build large proba-
bility tables for the next symbol at every context entry. Although it might seem that the two methods
operate in a different manner, it is helpful to understand that basically they employ similar statistical
principles.

1.2.1. Incremental Parsing

We chose to use an incremental parsing (IP) algorithm suggested by Lempel and Ziv [LZ78]. IP builds a
dictionary of distinct motifs by sequentially adding every new phrase that differs by a single next char-
acter from the longest match that already exists in the dictionary. For instance, given a text {ababaaa-
baabbabba…}, IP parses it into {a, b, ab, aa, aba, abb, abba…} where motifs are separated by commas.
The dictionary may be represented as a tree, each node being one particular symbol, and each branch
being one characteristic motif. For our example, we get :

Figure 1 : the tree resulting from the LZ analysis of the sequence {ababaaabaabbabba…}

3

- OpenMusic -

LZ 2.2 Lib

rary

1.2.2. Aleatory Generation

The dictionary, which is the result of the "style" analysis by Incremental Parsing, may be used to gener-
ate new instances of this "style". At each step of the generation phase, we try to identify as many last
symbols as possible - that have just been generated - with one subbranch of the tree that is not a com-
plete branch. The final node of this subbranch will be called the

context

 of this step of the generation
phase. For example, if we have already generated the sequence "aabbbaababbab" and if we would like
to add another symbol, following the style modelized by the tree displayed fig. 1, we see that the sub-
branch {b} contains the last generated sequence {b}. The trouble is, this branch is complete so we have
to choose another subbranch. We see also that the subbranch {ab} contains the last generated sequence
{ab} and is not a complete branch. And we also remark that we cannot find a longer subbranch that con-
tains a part of the last generated sequence. So the context is the node "b" of the subbranch {ab}.

This context contains one or several children. The choice of the next generated symbol is simply the sto-
chastic choice of one of these children, each of them having a probability proportional to the size of the
subtree under this child, that is to say the number of nodes in the subtree whose root is this child. In our
example, the two candidate children are "a" whose subtree size is 1, and "b" chose subtree size is 2. So
the choice of the next symbol is the result of the stochastic choice between "a" with probability 1/3 and
"b" with probability 2/3.

1.2.3. Relation to Markov models

An interesting relation between Lempel-Ziv and Markov models was discovered by [WIL91] when con-
sidering the length of the context used for prediction. In IP every prediction is done in the context of
earlier prediction, thus resulting in a sawtooth behavior of the context length. For every new phrase the
first character has no context, the second has context of length one, and so on. In contrast, the Markov
algorithm makes predictions using a totally flat context line determined by the order of the model. Thus,
while a Markov algorithm makes all of its prediction based on 3- or 4-character contexts, the IP algorithm
will make some of the predictions from lower depth, but very quickly it will exceed the Markov constant
depth and use a better context. Our experiments show that this IP scheme, along with the appropriate
linear representation of music, provides with patterns and inferences that successfully match musical ex-
pectation.

Another important feature of the dictionary-based methods is that they are "universal". If the model of
the data sequence was known ahead of time, an optimum prediction could be achieved at all times. The
difficulty with most real situations is that the probability model for the data is unknown. Therefore one
must use a predictor that works well no matter what the data model is. This idea is called "universal pre-
diction" and it is contrasted to Markov predictors that assume a given order of the data model. Universal
prediction algorithms make minimal assumptions on the underlying stochastic sources of musical se-
quences. Thus, they can be used in a great variety of musical and stylistic situations. Our IP based predic-
tor is one such example of universal predictor. This differs also from knowledge-based systems, where
specific knowledge about a particular style has to be first understood and implemented [COP96].

4

- OpenMusic -

LZ 2.2 Lib

rary

1.3. The Library

The library itself is extremely simple to use. It is based upon 4 main functions :

Lzify

, PSTify

Lzgenerate

and PSTgenerate.

Lzify

 and PSTify will take a Midifile and build the motif dictionary, while

Lzgenerate

and PSTgenerate will take that dictionary as input and generate a new sequence that behaves statisti-
cally like the original (a

variant

).

There are 2 way to use this : with a single midifile or with a set of midifile concatenated. In the last case,
the dictionary will be considered as a compressed representation of the

motivic

 space set up by these
midifiles. Thus

Lzgenerate

 and PSTgenerate

in that case will build a kind of interpolated path into that
space (see Patch Example 3).

The

Lzify

 and PSTify functions analyze strings of symbols. So a chord-seq or a midi-file, in order to be
analyzed by this function, has to be translated into a string of symbols by the function

midi->cross

.

Similarly, once the

Lzgenerate

 or

PSTgenerate

function has generated a sequence of symbols, it has to
be translated into a chord-seq by the

cross->chordseq

 function in order to be displayed by a chord-seq
object.

1.4. New features of the 2.2 version.

The LZ algorithm has been significantly improved. Now the generation is significantly better. You don’t
need to use

MinPast

 and

MinComplex

 to get good musical resuts any more !

A new set of operatos, called PST, that behave like LZ but in a more precise way. The trouble is, it is slow-
er too. The new objects are

PSTify

,

PSTgenerate

 and

PSTprint

.

1.5. New features of the 2.1 version.

Each time a patch is loaded, the

lzify

 boxes are automatically unlocked. Indeed, it is more convenient
and faster to compute their information again than loading them. In the same way, every duplicated

lzify

 box is automatically unlocked.

A bug has been fixed in the duration quantization algorithm taken from

OMKant

 library. And this algo-
rithm is not called any more when you do not need it.

1.6. New features of the 2.0 version.

In this new version, it is possible to analyze not only monodies or superposition of monodies, but also
complex polyphonies, containing chords, melodies, or anything else.

This new

midi->cross

 function also features a toolbox of functions that can simplify the original text in
order to ease the analysis phase.

This new version introduces the concept of

analysis information

 and

synthesis information

. Each symbol
of the original sequence can be splitted into a couple of two symbols : an

analysis symbol

 that will be
used by the Incremental Parsing algorithm, and a

synthesis symbol

 that contains other information that

5

- OpenMusic -

LZ 2.2 Lib

rary

will be added to the generated analysis symbols. For example, you can analyse only the pitch of the notes
(this will improve this analyse because there will be much more redondance), but keep in mind the du-
ration of the notes, in order to put it again into the generated symbols.

It is possible to constrain the generation phase to avoid

failures

. Indeed, sometimes, at some steps of the
generation phase, there may be no context at all (the last generated symbols do not belong to any
branch of the tree). In this case, the generation algorithm is able to decide to go back to a previous step
of the generation and try another symbol, until it succeeds.

Is is also possible to escape from looping states during the generation phase. Indeed, the

Lzgenerate

 may
sometimes generate infinite loops, for example infinite trills. The algorithm is now able to detect this
kind of loops and dec

ide to escape from it by taking into account, when choosing the context, not only the longest past but
also shorter pasts.

The generated sequence can begin by a predefined sequence (an

incipit

).

It is also possible to define any personal constraint that has to be true at each step of the generation
phase.

The new version analyzes not only MIDI files, but also chord-seqs.

The tree can be explicitly displayed in the Listener by the

lzprint

 function. It is also possible to get par-
ticular information like the number of nodes of the tree (

lzsize

), the size of the longest branch (

lzlength

)
of the tree or to display one by one all the branches of the tree (

lzuntree

).

6

- OpenMusic -

LZ 2.2 Lib

rary

2 LIBRARY REFERENCE

(see the long paper “ Automatic Modeling of Musical Style ”, ICMC.pdf)

Arguments inside brackets are optional.

LZify

LZify

text niter (type)

Builds a pattern dictionary containing a statistical model.

Inputs

text

 list of anything.

niter

 integer >=1.

type

 a list containing :
a function selecting the analysis information inside a symbol.
a function selecting the synthesis information inside a symbol.
a function that reconstructs the symbol from analysis and synthesis information
(will be used by

LZGenerate

).

output

a LZ continuation tree.

a LZ pattern tree.

description

LZify

 takes a list of anything considered as an ordered sequence. It then builds a pattern dictionary that
encodes patterns of various lengths discovered over this sequence, as well as the conditional probabili-
ties that a certain pattern be followed by certain elements. If

niter

 is greater than 1, the analysis of the
sequence is iterated

niter

 times, each time skipping the next element on the left of the sequence.

niter

>1
increases the number of patterns discovered. It is equivalent to analyzing a longer sequence, thus in-
creasing the statistical properties (redundancy). Empirical experience shows that

niter

 = 4 is good value
for such data as bach-like counterpoint or jazz chorus.

Then

LZify

 builds the continuation tree. This tree is another representation of the pattern dictionary,
suited to generation features : the branch are reversed, in order to ease the search for the maximum
context, and the continuations of each context are explicitly represented, linked with their correspond-
ing probabilities.

In the 2.0 version, if you lock this object, saving, loading or copying this required a significant amount
of time, because all the trees would be saved or duplicated. That is why, in the 2.1 version, this object is
automatically unlocked each time the patch is loaded or when the box is duplicated.

7

- OpenMusic -

LZ 2.2 Lib

rary

LZgenerate

LZgenerate

dict maxpast length (mostprobable minpast mincomplex incipit1 incipit2 reconstr strategy
constraints equiv1 equiv2)

Generates a new sequence following the model of a given LZ continuation tree (generated by the

LZify

function).

Inputs

dict

a LZ continuation tree generated by the

LZify

 function.

maxPast

nil

 or integer. maximum length of the context. If

nil

 : no maximum past constraint.

Length

integer, >=1. length of the sequence to be generated.

mostprobable

if not true, inverse all the probability distributions (the less probable one becomes
the most probable one).

minPast

integer, >=0. minimum length of the context.

minComplex

integer, >=0. minimum size of the subLZtree of each context.

incipit1

list. a sequence of analysis symboles that will be the beginning of the generated
analysis sequence.

incipit2

list. a sequence of synthesis symboles that will be the beginning of the generated
synthesis sequence.

reconstr

a function that reconstructs the symbol from analysis and synthesis information. If
nil, the predefined (in

LZify

) fonction will be used.

strategy

function that chooses new synthesis information according to its last evolution.

constraints

constraint function of the last generated analysis information and last generated
sequence, both reversed.

equiv1

function that compares a symbole at the root of the tree with the last generated
one.

equiv2

function that compares a symbole with any in the tree.

output

a list of events in the same alphabet as the analyzed sequence.

description

After building a pattern dictionary using

LZify

,

LZGenerate

 may be used to generate a new sequence
that imitates the statistical behaviour encoded into the dictionary. If a list of <something> had been an-
alyzed by LZify, the result will be a new list of <something>.

At a every point of the generation, LZGenerate looks at the longest sequence of last generated elements
that belongs to the LZ tree (even those that do not start exactly from the root).

8

- OpenMusic -

LZ 2.2 Lib

rary

It then checks the conditional probabilities associated with that pattern (or context) , then generates a
new element with regard to the probability. It then adds this element to the right of the generated se-
quence, and iterates.

If

maxPast

 in an integer, the length of the context must not exceed

maxPast

. That is to say, this limits
the size of the memory of what LZGenerate has previously generated.

If, at a certain point of the generation, the length of the context is lower than

minPast

, then

LZGenerate

goes back one step before and generates another symbols until it respects the

minPast

 constraint. It may
go back as far as necessary. If no sequence can respect the constraint,

LZGenerate

 returns

nil

.

Thanks to the

minPast

 parameter, you can prevent

LZGenerate

 from generating with no or little context.

minPast

 = 1 is generally high enough. For

minPast

 > 1, the constraint mat be too high : there may be no
more possible result or only stationnary results.

If, at a certain point of the generation, the number of all the nodes of the tree that can be reached from
now on (which is called the subtree generated by the present context) is lower than

minComplex

, then

LZGenerate

 takes into account not only the continuation of the longest context, but also those of more
little context, this in order to get out of this subtree. Thanks to the

minContext

 parameter, you can pre-
vent

LZGenerate

 from getting stuck inside a little subtree.

Warning : if minPast value is set to 0 and if you specify either a positive minComplex value or a cons-
traint, the generation algorithm will have to remember, at each generation step, a lot of information.
In this case, the algorithm may need too much memory.

9

- OpenMusic -

LZ 2.2 Lib

rary

PSTify

PSTify

text pmin a ymin r l (type)

Builds a pattern suffix tree modeling the text.

Inputs

text

list of anything.

Pmin

min

frequency.

a
ymin

min

probability.

r

quotient threshold.

L

memory length.

type

a list containing :
a function selecting the analysis information inside a symbol.
a function selecting the synthesis information inside a symbol.

a function that reconstructs the symbol from analysis and synthesis information (will be used by

LZGe-
nerate

).

output

a PST (Prediction Suffix Tree)

description

First, we define L to be the memory length of the PST, i.e. the maximal length of a possible string in the
tree. We work out gradually through the space of all possible subsequences of length 1 through L, start-
ing at single letter subsequences, and abstaining from further extending a subsequence whenever its
empirical probability has gone below a certain threshold (Pmin), or on having reached the maximal L
length boundary. The Pmin cutoff avoids an exponentially large (in L) search space. At the beginning of
the search we hold a PST consisting of a single root node. Then, for each subsequence we decide to ex-
amine, we check whether there is some symbol in the alphabet for which the empirical probability of
observing that symbol right after the given subsequence is non negligible, and is also significantly dif-
ferent (i.e. the quotient exceeds a certain threshold r) from the empirical probability of observing that
same symbol right after the string obtained from deleting the leftmost letter from our subsequence. This
string corresponds to the label of the direct father of the node we are currently examining (note that
the father node has not necessarily been added itself to the PST at this time). Whenever these two con-
ditions hold, the subsequence, and all necessary nodes on its path, are added to our PST.

The reason for the two step pruning (first defining all nodes to be examined, then going over each and
every one of them) stems from the nature of PSTs. A leaf in a PST is deemed useless if its prediction func-
tion is identical (or almost identical) to its parent node. However, this in itself is no reason not to exam-
ine its sons further while searching for significant patterns. Therefore, it may, and does happen that
consecutive inner PST nodes are almost identical.

10

- OpenMusic -

LZ 2.2 Lib

rary

Finally, the node prediction functions are added to the resulting PST skeleton, using the appropriate
conditional empirical probability, and then these probabilities are smoothed using a standard technique
so that no single symbol is absolutely impossible right after any given subsequence (even though the
empirical counts may attest differently).

Here is the PST analysis of “abracadabra”, with Pmin = 0.1, r = 2, L = 10 and a minimum smoothed prob-
ability of 0.01. For each node is associated the list of probabilities that the continuation be, respectively,
a, b, c, d and r.

“” (root)
(0.44, 0.18, 0.10, 0.10, 0.18)

“b”
(0.96, 0.01, 0.01,

 0.01, 0.01)

“r”
 (0.96, 0.01, 0.01,

 0.01, 0.01)

“da”
 (0.01, 0.96, 0.01,

 0.01, 0.01)

“ra”
 (0.01, 0.01, 0.96,

 0.01, 0.01)

“ca”
 (0.01, 0.01, 0.01,

 0.96, 0.01)

11

- OpenMusic -

LZ 2.2 Lib

rary

PSTgenerate

PSTgenerate

dict length (minpast incipit1 incipit2 reconstr strategy constraints equiv1 equiv2)

Generates a new sequence following the model of a given PST (generated by the

PSTify

 function).

Inputs

dict

a PST generated by the PSTify function.
Length integer, >=1. length of the sequence to be generated.
minPast integer, >=0. minimum length of the context.
incipit1 list. a sequence of analysis symboles that will be the beginning of the generated

analysis sequence.
incipit2 list. a sequence of synthesis symboles that will be the beginning of the generated

synthesis sequence.
reconstr a function that reconstructs the symbol from analysis and synthesis information. If

nil, the predefined (in PSTify) fonction will be used.
strategy function that chooses new synthesis information according to its last evolution.
constraints constraint function of the last generated analysis information and last generated

sequence, both reversed.
equiv1 function that compares a symbole at the root of the tree with the last generated

one.
equiv2 function that compares a symbole with any in the tree.

output

a list of events in the same alphabet as the analyzed sequence.

description:

After building a pattern dictionary using PSTify, PSTGenerate may be used to generate a new sequence
that imitates the statistical behaviour encoded into the dictionary.

If a list of <something> had been analyzed by PSTify, the result will be a new list of <something>.

At a every point of the generation, PSTGenerate looks at the longest sequence of last generated ele-
ments

that belongs to the PST.

It then checks the conditional probabilities associated with that pattern (or context) , then generates a
new element with regard to the probability. It then adds this element to the right of the generated
sequence, and iterates.

If, at a certain point of the generation, the length of the context is lower than minPast, then PSTGene-
rate goes back one step before and generates another symbols until it respects the minPast constraint.
It may go back as far as necessary. If no sequence can respect the constraint, PSTGenerate returns nil.

Thanks to the minPast parameter, you can prevent PSTGenerate from generating with no or little con-
text.

12 - OpenMusic - LZ 2.2 Library

midi->cross
midi->cross midi-info (legatime arpegtime releastime staccatime toltime)

Transforms the output of a MidiFile into a pitch/duration Cross-Alphabet sequence.

Inputs

midi-info a MidiFile object from a midifile box, or a list from a mf-info box.
legatime an integer or nil : maximum legato time, in ms. if nil : no time constraints for

legato filter.
arpegtime an integer : minimum arpegio time, in ms.
releastime an integer or nil : maximum release synchro time, in ms. if nil : infinite release-syn-

chro.
staccatime an integer or nil : maximum staccato time, in ms. if nil : no time constraints for stac-

cato filter.
toltime an integer : time tolerance of quantization, in percent.

output

a list of polyphonic slices.

description

The cross-alphabet sequence is a list containing sublists of the form : (... ((c1 c2 ... cn) d) ...)

where the ci are either 0 (empty canal) or a list of the form (p1 p2 ... pm)

where the pi are pitches in midicents

and d is a duration in ms.

Each of this sublist encodes a polyphonic slice, containing a set of canals - which are sets of superposed
pitches - and lasting for a certain duration. The concatenation of all these slices is musically equal to the
original midi sequence.

This representation captures the essentials of the polyphonic/rythmic structure of the midifile. It is thus
convenient to be given as input to the LZify function if you want to build a statistical model of a poly-
phonic piece from a midifile.

If you use then LZgenerate or its variants to generate an improvisation of the piece, you'll get again a
pitch/duration cross-alphabet sequence. Then you'll need a function such as cross->chordseq to put your
data back into a musical form.

Filters are designed to simplify the alphabet of symbols and the dictionnary of patterns :

Each time a new note is activated, the legato filter inspects the continuation of the sequence until the
release of this note or until legatime msec. Any note that has been activated before the new note and
that is released during the inspected part will then be released just when the new note is activated.
Therefore, this filter discards intermediate states where two juxtaposed notes are superimposed during
a very short time.

Each time a new note is activated, the arpeggio filter inspects the continuation of the sequence until
arpegtime msec. Any note that was due to be activated during the inspected part will in fact be activated
just when the former note is activated. Thus, this filter synchronizes arpeggios.

13 - OpenMusic - LZ 2.2 Library

Each time a note is released, the release synchro filter synchronizes all the following releases - until the
activation of a new note or until releastime msec - at the date of the first release. Thus, this filter syn-
chronizes note releases.

The staccato filter removes each release period, between two played periods, that lasts less than stacca-
time msec.

Finally, the duration of each symbol is quantified with the help of an OMKant library function : make-
regular. This function accepts one particular parameter, here toltime, which specifies the percentage of
error that is tolerated during the quantization.

14 - OpenMusic - LZ 2.2 Library

listmidi->cross
listmidi->cross midi-infos (legatime arpegtime releastime staccatime toltime)

A version of midi->cross dedicated to a list of several midi files or midi informations instead of only one
midi file or midi information.

15 - OpenMusic - LZ 2.2 Library

cross->chordseq
cross->chordseq cross time-coef

Transforms a Cross-Alphabet sequence into a chord-seq.

Inputs

cross a pitch/duration cross-alphabet sequence generated by the function midi->cross.
time-coeff float number > 0.0

output

a <chord-seq> object.

see midi->cross.

16 - OpenMusic - LZ 2.2 Library

midi->chordseq
midi->chordseq midifile

Converts the output of a midifile box, or the output of a mf-info box to a single chord-seq object. The
tracks will be merged, and events occuring quasi-simultaneously will be grouped into chords with
regards to the approximation parameter 'delta value' (ms) available in the preferences of OpenMusic.

chordseq->midi chordseq

Transforms a chord-seq into a mf-info.

input

a Chord-Seq.

output

a mf-info.

17 - OpenMusic - LZ 2.2 Library

lzprint
lzprint tree

Print a given pattern dictionnary.

input :

tree a LZ pattern tree or a LZ continuation tree generated by the LZify function.

output

nil.

description

Each line in the display of the tree features one node of the tree. The indentation of the line is propor-
tional to the deepness of the node in the tree. For a continuation tree, each line features the analysis
symbol, and between brackets, the sequence of synthesis symbols associated to the branch from the
root of the tree to the node.

Let's consider again the previous exemple {a,b,ab,aa,aba,abb,abba…}, and let's add for each analysis
symbol a synthesis symbol. Suppose the synthesis sequence is {1, 2, 3 1, 2 3, 1 2 3, 1 2 3, 1 2 3 1…}. If we
add the synthesis symbols in the tree, we get :

Figure 2 : The pattern tree of an analysis/synthesis example.

18 - OpenMusic - LZ 2.2 Library

So the result of Lzprint is :

0 <nil>

a <1>

a <2 3>

b <3 1>

a <1 2 3>

b <1 2 3>

a <1 2 3 1>

b <2>

The continuation tree is an optimized representation of the pattern tree : each branch is reversed, and
for each node is featured all the possible continuations with corresponding number of iterations. For
each continuation is presented, inside double brackets, a table associating each possible synthesis
sequence with its possible continuations. The continuation tree of our previous example is :

Figure 3 : The continuation tree of previous example.

Its display in the Listener by Lzprint is :

0 -> (a : 6) << nil -> (1 2 3 1 1 1) >> (b : 1) << nil -> (2) >>

a -> (a : 1) << (2) -> (3) >> (b : 4) << (3) -> (1) >> << (1) -> (2 2 2) >>

b.

a -> (a : 1) << (1 2) -> (3) >> (b : 2) << (1 2) -> (3 3) >>

b.

a -> (a : 1) << (1 2 3) -> (1) >>

Then Lzprint writes the name of the default reconstruction function that has been defined in Lzify and
that will be used by Lzgenerate.

19 - OpenMusic - LZ 2.2 Library

pstprint tree
Print a given PST.

input

tree a PST generated by the PSTify function.

output

nil.

description

Cf. lzprint.

20 - OpenMusic - LZ 2.2 Library

lzprintreconstr

lzprintreconstr tree

Indicates the reconstr function used by the continuation tree.

input

tree a LZ continuation tree generated by the LZify function.

output

nil.

21 - OpenMusic - LZ 2.2 Library

lzsize

lzsize tree

Finds the size (number of nodes) of the tree.

input

tree a LZ continuation tree or pattern tree generated by the LZify function.

output

nil.

22 - OpenMusic - LZ 2.2 Library

lzlength
lzlength tree

Finds the lengths of the longest branch of the tree.

input

tree a LZ continuation tree or pattern tree generated by the LZify function.

output

nil.

23 - OpenMusic - LZ 2.2 Library

lzuntree
lzuntree tree (delay)

Appends all the patters of a given pattern dictionnary, separating one from each other by a delay.

input

tree a LZ continuation tree or pattern tree generated by the LZify function.
delay delay time between branches.

output

A sequence of patterns.

24 - OpenMusic - LZ 2.2 Library

crop
crop midi-info begin end

Crops the Midi Info from time <begin> to <end>

Inputs

midi-info a list given by the mf-info box
begin, end integer in ms

output

a list in the same format than given by mf-info box (or the output of a MidiFile)

Crops the Midi data from time begin to end, and delivers a list in the same format than given by mf-
info box : (midicents, onset-time(ms), duration(ms), velocity, channel)

This list can serve as input to the box midi->cross.

timescaler
timescaler midi-info scaler

Time scales the Midi info by <scaler>

Inputs

midi-info a list given by the mf-info box
scaler a float number > 0.0

output

a list in the same format than given by mf-info box (or the output of a MidiFile)

Time scales the Midi data by coefficient scaler and delivers a list in the same format than given by mf-
info box : (midicents, onset-time(ms), duration(ms), velocity, channel)

This list can serve as input to the box midi->cross.

transposer
transposer midi-info offset

Transposes the Midi information (given by mf-info) by offset semitones

Inputs

midi-info a list given by the mf-info box (or the output of a MidiFile)
offset an integer

output

a list in the same format than given by mf-info box.

Transposes the Midi data by offsett <offset> in semitones and delivers a list in the same format than
given by mf-info box : (midicents, onset-time(ms), duration(ms), velocity, channel)

This list can serve as input to the box midi->cross.

3 LIBRARY TUTORIAL

Three sample patches are provided with the LZ library. They will be found on the workspace window of
OpenMusic, in the folder « LZ examples ». If they are not found there, please go to the finder and open
the folder

OM x.x : User Library : LZ x.x :

then drag the folder « LZ examples » from there to the WorkSpace window.

Note that all the patches use MidiFiles. The first time a patch is open, OpenMusic will issue a dialog box
and ask you to locate the MidiFile. The sample MidiFiles are all located in the folder

OM x.x : User Library : LZ x.x : LZ examples

Nearly all these example patches take one or several Midifiles, compute a pattern dictionary using Lzify,
then compute a variant of the Midifile using Lzgenerate, and send it to a chordseq. When using several
MidiFiles, the variant is really a structural interpolation between them.

Example 1 : Basic of LZ.

Example 2 : Improvement of example 1.

Example 3 : Avoiding excessive repetitions.

Example 4 : Analysis of a set of several midi files.

Example 5 : The analysis / synthesis information.

Example 6 : Information about the result of the LZ analysis.

Example 7 : The options of Lzgenerate.

Example 8 : Some examples of constraints.

new ! Pst : Basic of PST.

Pst vs Lz : Comparison between PST and LZ.

Virtual_Corea : LZ example with Corea improvisation.

4 ANNEX

See the ICMC 1999 short paper:

"Guessing the Composer’s Mind: Applying Universal Prediction to Musical Style"

Gérard Assayag (Ircam) , Shlomo Dubnov (Ben Gurion University), Olivier Delerue (Ircam)

Proceedings ICMC 99, Beijing, China

File : ICMC 99 Short.pdf

See also the long paper :

"Automatic Modeling of Musical Style"

O. Lartillot, S. Dubnov, G. Assayag, G. Bejerano

File : ICMC.pdf

	Incremental Parsing 2
	Aleatory Generation 3
	Relation to Markov models 3
	1 LIBRARY PRESENTATION
	1.1. Introduction
	1.2. Dictionary-based prediction
	1.2.1. Incremental Parsing
	1.2.2. Aleatory Generation
	1.2.3. Relation to Markov models

	1.3. The Library
	1.4. New features of the 2.2 version.
	1.5. New features of the 2.1 version.
	1.6. New features of the 2.0 version.

	2 LIBRARY REFERENCE
	3 LIBRARY TUTORIAL
	4 ANNEX

